Categorical values are those that represent a category or group of data, in contrast to numerical values, which represent quantities. In machine learning, categorical values are important because many algorithms require data to be represented numerically.
For example, categorical values can represent the make of a car, the colour of a product, the category of an image or the type of a question. These values can be represented as character strings or as integers representing a particular category.
When processing categorical values in a machine learning model, it is necessary to encode them into a numerical form that can be interpreted by the algorithm. A common technique for encoding categorical values is one-hot encoding, which converts each categorical value into a binary vector in which only one of the elements is "1" and the others are "0".
It is important to note that the choice of the appropriate encoding of categorical values can significantly affect the performance of the machine learning model.
Today we are going to talk about how to foresee payment problems and foresee the problems in those customers who are currently not giving it to you. In G [...]
Read More »Artificial intelligence is changing the world at breakneck speed and you're probably wondering when it will surpass artificial intelligence in the [...]
Read More »Artificial Intelligence is transforming the way in which companies relate to their customers, how work is managed, the way they work, the way in which [...]
Read More »A few days ago we were able to attend a pioneering event in the world of Retail, the Retail Future 2022 fair. In its fifth edition, and under the slogan "Challenge [...]
Read More »