Overfitting

Concept and definition

Overfitting

What is Overfitting?

Overfitting is a term used in machine learning to describe a model that has been overfitted to the training data, resulting in poor performance on new or unseen data. That is, the model has learned the training data "by heart", rather than capturing the underlying relationships in the data. This can occur when the model is too complex or is trained for too long, leading to an increased ability of the model to fit the training data rather than generalising to new data. Methods to avoid over-fitting include cross-validation, reducing model complexity and adding regularisation.

« Back to glossary

Do you want to get in touch?

CDRs contain data that a telecommunications company collects about phone calls, such as time and length of call. This data can be used in analytical applications.
Fill the form
Share:
How AI can reduce product returns by 2023

Artificial intelligence (AI) solutions are valuable in reducing product returns. Through data analysis and decision [...]

Read More »
Clustering for data analysis

Clustering methods, or grouping, are a fundamental part of the data analysis process, since they allow an automatic segmentation of the data [...]

Read More »
ERP vs CRM system: What is the difference?

If you don't know the difference between an ERP (Enterprise Resource Planning) system and a CRM (Customer Relationship Management) system, here's what you need to know about the [...]

Read More »
Reducing Churn and improving customer satisfaction with predictive forecasting

Churn, or customer churn rate, is a constant challenge for today's businesses. The ability to retain customers is a constant challenge for today's companies.

Read More »
See more entries
© Gamco 2021, All Rights Reserved - Legal notice - Privacy - Cookies