Overfitting

Concept and definition

Overfitting

What is Overfitting?

Overfitting is a term used in machine learning to describe a model that has been overfitted to the training data, resulting in poor performance on new or unseen data. That is, the model has learned the training data "by heart", rather than capturing the underlying relationships in the data. This can occur when the model is too complex or is trained for too long, leading to an increased ability of the model to fit the training data rather than generalising to new data. Methods to avoid over-fitting include cross-validation, reducing model complexity and adding regularisation.

« Back to glossary

Do you want to get in touch?

CDRs contain data that a telecommunications company collects about phone calls, such as time and length of call. This data can be used in analytical applications.
Fill the form
Share:
How AI is revolutionizing fraud detection in e-commerce

As e-commerce continues to grow at a dizzying pace, fraudsters are also finding new and sophisticated ways to exploit the potential [...]

Read More »
Artificial Intelligence in the Fintech market

Before talking about artificial intelligence in the Fintech market, we would like to mention that the term Fintech is nowadays applied to the technologies that are [...]

Read More »
The 5 Challenges of Big Data in Machine Learning

5 Big Data challenges can be highlighted which are defined as V (volume, velocity, veracity, variety and value). R. Narasimhan discussed 3V with [...]

Read More »
What is Surety Insurance?

You are probably wondering, what is surety insurance and how does it help your company? In today's economic environment, [...]

Read More »
See more entries
© Gamco 2021, All Rights Reserved - Legal notice - Privacy - Cookies