El sobreajuste, o overfitting en inglés, es un término utilizado en aprendizaje automático para describir un modelo que ha sido demasiado ajustado a los datos de entrenamiento, lo que resulta en un rendimiento deficiente en datos nuevos o no vistos. Es decir, el modelo se ha aprendido los datos de entrenamiento "de memoria", en lugar de capturar las relaciones subyacentes en los datos. Esto puede ocurrir cuando el modelo es demasiado complejo o se entrena durante demasiado tiempo, lo que lleva a una mayor capacidad del modelo para ajustarse a los datos de entrenamiento en lugar de generalizar a nuevos datos. Los métodos para evitar el sobreajuste incluyen la validación cruzada, la reducción de la complejidad del modelo y la adición de regularización.
El término inteligencia artificial (IA) es pura actualidad, pero fue inventado en 1956 por John McCarthy, Marvin Minsky y Claude Shannon en la famosa [...]
Leer más »Si las observamos por separado, el Internet de las Cosas (IoT) y la Inteligencia Artificial (IA) son tecnologías poderosas y si las combinamos, obten [...]
Leer más »Hace unos días pudimos asistir a un evento pionero en el mundo del Retail, la feria Retail Future 2022. En su quinta edición, y bajo el lema “Reta [...]
Leer más »Hoy vamos a explicar las diferencias que existen entre un CRM (Customer Relationship Management) tradicional y un CRM inteligente aplicando tecnologí [...]
Leer más »