Growing Self-Organizing Networks (GSOM) are a type of unsupervised artificial neural network used for learning and visualization of high-dimensional data. GSOMs are based on a mesh or grid structure, where each node represents an input region in the feature space of the data.
The GSOM learning process is divided into two main phases: a growth phase and a pruning phase. In the growth phase, nodes are dynamically added to the network as needed to accommodate the distribution of data. In the pruning phase, unnecessary nodes are removed, keeping only the nodes that are relevant to the data representation.
GSOMs are often used for visualization and exploration of large, high-dimensional data sets. The mesh structure of the network allows for a two-dimensional representation of the data, which facilitates the identification of patterns and relationships between the data. In addition, GSOMs have the ability to adapt to new data, making them useful for real-time applications.
Reference: "A growing self-organizing network for reconstructing curves and surfaces", Piastra, Marco, in Neural Networks, 2009. IJCNN 2009. International Joint Conference on, IEEE, 2009, pp. 2533-2540.
Hoy, 3 de octubre, hemos estado en los prestigiosos "Premios SCALEUPS B2B organizada por la Fundación Empresa y Sociedad, para hablaros de la Medici [...]
Read More »Companies are increasingly aware of the importance of properly analyzing and managing the huge amount of data they store on a daily basis.
Read More »How is artificial intelligence helping us? Artificial intelligence (AI) has gone from being the stuff of science fiction movies to a [...]
Read More »Credit scoring is a system used to rate credits and thus try to automate the decision making process at the time of purchasing a loan, and to [...]
Read More »