ADALINE (Adaptive Linear Neuron) is an artificial neural network model proposed by Bernard Widrow and Ted Hoff in 1960. It is similar to the perceptron, but instead of a step activation function, it uses a linear activation function.
ADALINE is a supervised learning model used to perform binary classification and linear regression. The neural network consists of an input layer, an output layer and a feedback layer that adjusts the weights of the input layer according to the output obtained.
The objective of ADALINE is to minimise the mean square error (MSE) between the desired output and the actual output of the network. It does this by using the gradient descent algorithm to adjust the input layer weights.
ADALINE is a linear model, which means that it can only learn linear relationships between inputs and outputs. However, it can be used as a basic unit in more complex neural network models, such as multilayer neural networks.
Industry 4.0 is the name given to the fourth industrial revolution, which is characterized by the inclusion of advanced technologies in production processes.
Read More »Machine learning is a branch of artificial intelligence (AI) that is based on making a system capable of learning from the information it receives.
Read More »Deep learning translates as deep learning and is a type of artificial intelligence (AI) that is encompassed within machine learning.
Read More »In this article we are going to focus on how artificial intelligence (AI) can increase efficiency and reduce costs for your company by [...]
Read More »