ADALINE (Adaptive Linear Neuron) es un modelo de red neuronal artificial propuesto por Bernard Widrow y Ted Hoff en 1960. Es similar al perceptrón, pero en lugar de una función de activación escalonada, utiliza una función de activación lineal.
El ADALINE es un modelo de aprendizaje supervisado que se utiliza para realizar la clasificación binaria y la regresión lineal. La red neuronal está formada por una capa de entrada, una capa de salida y una capa de retroalimentación que ajusta los pesos de la capa de entrada en función de la salida obtenida.
El objetivo del ADALINE es minimizar el error cuadrático medio (MSE) entre la salida deseada y la salida real de la red. Para ello, utiliza el algoritmo de descenso del gradiente para ajustar los pesos de la capa de entrada.
El ADALINE es un modelo lineal, lo que significa que solo puede aprender relaciones lineales entre las entradas y las salidas. Sin embargo, puede ser utilizado como una unidad básica en modelos más complejos de redes neuronales, como las redes neuronales multicapa.
Ya tienes todo lo necesario para ponerte manos a la obra y empezar a trabajar con los datos de la empresa. Tras sortear los primeros obstáculos de ma [...]
Leer más »Un artículo publicado en abril de 2021 por Óscar Jiménez El Confidencial, se titulaba así “Premio de 34.000 M para los bancos por aplicar bien i [...]
Leer más »Para identificar las necesidades del cliente es necesario conocer su opinión, pues esto sirve para detectar dónde debes mejorar, qué aceptación te [...]
Leer más »Existe consenso entre los directivos de las mayores compañías del mundo sobre el importante impacto que la Inteligencia Artificial (IA) va a tener e [...]
Leer más »