Outliers, or outliers, are values that deviate significantly from the majority of other values in a dataset. In the context of artificial intelligence and machine learning, outliers can be a major problem because they can have a negative effect on the accuracy and effectiveness of machine learning models. Outliers can be the result of measurement errors, data entry errors or rare and infrequent events in the dataset environment. If not handled properly, outliers can bias machine learning models and generate inaccurate or insufficient predictions. Therefore, it is important to identify and deal with outliers in datasets before using them to train machine learning models. Common methods for handling outliers include removing outliers, transforming the data to reduce their impact, and using robust models that are less sensitive to outliers.
When it comes to gaining new clients, everything is joy and satisfaction for being able to provide them with our service or sell them our product in the best way possible, and we [...]
Read More »An article published in April 2021 by Óscar Jiménez El Confidencial, was titled "34,000 M prize for banks for applying well i [...]
Read More »If you don't know the difference between an ERP (Enterprise Resource Planning) system and a CRM (Customer Relationship Management) system, here's what you need to know about the [...]
Read More »We often wonder what examples of AI we can find in our environment, and the fact is that artificial intelligence is a concept that in English has [...]
Read More »