Los outliers, o valores atípicos, son valores que se alejan significativamente de la mayoría de los demás valores en un conjunto de datos. En el contexto de la inteligencia artificial y el machine learning, los outliers pueden ser un problema importante porque pueden tener un efecto negativo en la precisión y la eficacia de los modelos de aprendizaje automático. Los outliers pueden ser el resultado de errores de medición, errores de entrada de datos o eventos raros y poco frecuentes en el entorno del conjunto de datos. Si no se manejan adecuadamente, los outliers pueden sesgar los modelos de aprendizaje automático y generar predicciones inexactas o insuficientes. Por lo tanto, es importante identificar y tratar los outliers en los conjuntos de datos antes de utilizarlos para entrenar modelos de aprendizaje automático. Los métodos comunes para manejar los outliers incluyen la eliminación de los valores atípicos, la transformación de los datos para reducir su impacto y el uso de modelos robustos que sean menos sensibles a los outliers.
Seguramente te estés preguntando ¿Qué es un seguro de caución? ¿Y cómo ayuda a tu empresa? Y es que, en el entorno económico actual, [...]
Leer más »Muchas veces nos preguntamos dónde se aplica el Big Data y podemos suponer una gran relevancia de Big Data para los negocios. Esto explica el gran in [...]
Leer más »Cada día tenemos más presente la inteligencia artificial en las empresas y su crecimiento prácticamente se aplica en todos los sectores. Cuando fin [...]
Leer más »Antes de explicaros qué es la inteligencia artificial, nos gustaría empezar con la frase del libro Age of intelligent machines (1992), de Raymond Ku [...]
Leer más »