El aprendizaje por refuerzo es una técnica de machine learning en la que un agente aprende a tomar decisiones en un entorno interactivo, a través de la retroalimentación que recibe de su acción. El objetivo del agente es maximizar una recompensa numérica a largo plazo, que se le otorga por tomar las decisiones correctas en el entorno.
El aprendizaje por refuerzo se basa en el concepto de prueba y error, donde el agente aprende a través de la interacción continua con el entorno, ajustando sus acciones en función de las recompensas y penalizaciones que recibe. El agente explora diferentes acciones en el entorno, observa los resultados y aprende a seleccionar las acciones que maximizan la recompensa a largo plazo.
El aprendizaje por refuerzo se utiliza comúnmente en aplicaciones de robótica, juegos y automatización de procesos, donde un agente autónomo debe aprender a tomar decisiones en tiempo real para lograr objetivos específicos.
Existe un amplio consenso entre los directivos de las principales empresas del mundo acerca del impacto que va a tener la inteligencia artificial en e [...]
Leer más »En la era digital actual, las reseñas y comentarios de los clientes en línea se han convertido en un factor clave que influye en las decisiones de c [...]
Leer más »GAMCO es una empresa pionera en la creación de soluciones de software de Inteligencia Artificial y Aprendizaje Automático. Las soluciones de GAMCO p [...]
Leer más »El auge de la Inteligencia Artificial (IA) en los negocios está muy de actualidad. Su uso se está extendiendo y está cambiando, incluso, los modelo [...]
Leer más »