Concept and definition


What is Tokenizers?

In natural language processing, a tokeniser is a tool used to break up text into discrete units called tokens. A token can be a word, punctuation, number, symbol or other meaningful unit in the text. The purpose of the tokeniser is to prepare the text for machine learning analysis and modelling.

There are different types of tokenisers, including rule-based and machine learning-based tokenisers. Rule-based tokenisers use predefined patterns to divide text into tokens, while machine learning-based tokenisers use language models to identify patterns and structures in the text and divide it into tokens.

Tokenisers are an important tool in natural language processing, as proper representation of input data is essential for training accurate machine learning models.

« Back to glossary

Do you want to get in touch?

CDRs contain data that a telecommunications company collects about phone calls, such as time and length of call. This data can be used in analytical applications.
Fill the form
How do I know if a customer will pay me?

When it comes to gaining new clients, everything is joy and satisfaction for being able to provide them with our service or sell them our product in the best way possible, and we [...]

Read More »
Main branches of Artificial Intelligence

Artificial Intelligence (AI) derives from a series of models or branches that can be used in different areas of people's lives, as well as in different areas of [...]

Read More »
NPLs and recovery of delinquent portfolios

Normally the acronym NPLs (Non Performing Loans) is used in the financial sector and is a reality in Spanish banks as well as in banks [...].

Read More »
What is Buy Now Pay Later (BNPL) and how does it benefit your online business?

The banking sector has undergone considerable transformations over the past 10 years. Especially as banking has become more integrated and [...]

Read More »
See more entries
© Gamco 2021, All Rights Reserved - Legal notice - Privacy - Cookies