En el procesamiento del lenguaje natural, un tokenizador es una herramienta que se utiliza para dividir un texto en unidades discretas llamadas "tokens". Un token puede ser una palabra, una puntuación, un número, un símbolo u otra unidad significativa en el texto. El objetivo del tokenizador es preparar el texto para el análisis y el modelado en el aprendizaje automático.
Existen diferentes tipos de tokenizadores, incluyendo los basados en reglas y los basados en el aprendizaje automático. Los tokenizadores basados en reglas utilizan patrones predefinidos para dividir el texto en tokens, mientras que los tokenizadores basados en el aprendizaje automático utilizan modelos de lenguaje para identificar patrones y estructuras en el texto y dividirlo en tokens.
Los tokenizadores son una herramienta importante en el procesamiento del lenguaje natural, ya que la representación adecuada de los datos de entrada es fundamental para el entrenamiento de modelos de aprendizaje automático precisos.
El término inteligencia artificial (IA) es pura actualidad, pero fue inventado en 1956 por John McCarthy, Marvin Minsky y Claude Shannon en la famosa [...]
Leer más »Las siglas ERP significan Enterprise Resource Planning y se trata de un sistema de planificación informático y gestión empresarial capaz de integra [...]
Leer más »A medida que el comercio electrónico continúa creciendo a un ritmo vertiginoso, los estafadores también están encontrando nuevas y sofisticadas fo [...]
Leer más »El aprendizaje automático es una rama de la inteligencia artificial (IA) que se basa en conseguir que un sistema sea capaz de aprender a partir de la [...]
Leer más »