Latent Semantic Indexing (LSI)

Concept and definition

Latent Semantic Indexing (LSI)

What is Latent Semantic Indexing (LSI)?

Latent Semantic Indexing (LSI) is a technique used in natural language processing (NLP) to analyse and represent the meaning of a text.

LSI uses a mathematical model to identify patterns of similarity between words and documents, creating a vector representation of the text that reflects its semantic content.

This technique is commonly used in search engines and recommender systems to improve the accuracy of results and suggestions, as it can identify subtle semantic relationships between words and documents that are not evident in their literal form.

« Back to glossary

Do you want to get in touch?

CDRs contain data that a telecommunications company collects about phone calls, such as time and length of call. This data can be used in analytical applications.
Fill the form
Share:
What is Data Mining?

Data Mining is a process of exploration and analysis of large amounts of data, with the objective of discovering patterns, relationships and trends that can be [...]

Read More »
How to detect delinquent customers and avoid defaults? 10 signs of delinquency

As a consequence of this pandemic and economic situation in which we have found ourselves for the last two years, with the intention of better protecting the [...]

Read More »
How artificial intelligence impacts software as a service (SaaS) companies

Software as a Service (SaaS) companies have gained enormous prominence in the last few years, mainly due to the novelty of the products [...]

Read More »
The rise of artificial intelligence in business

The rise of Artificial Intelligence (AI) in business is very topical. Its use is spreading and is changing, even, the models [...]

Read More »
See more entries
© Gamco 2021, All Rights Reserved - Legal notice - Privacy - Cookies