Latent Semantic Indexing (LSI)

Concept and definition

Latent Semantic Indexing (LSI)

What is Latent Semantic Indexing (LSI)?

Latent Semantic Indexing (LSI) is a technique used in natural language processing (NLP) to analyse and represent the meaning of a text.

LSI uses a mathematical model to identify patterns of similarity between words and documents, creating a vector representation of the text that reflects its semantic content.

This technique is commonly used in search engines and recommender systems to improve the accuracy of results and suggestions, as it can identify subtle semantic relationships between words and documents that are not evident in their literal form.

« Back to glossary

Do you want to get in touch?

CDRs contain data that a telecommunications company collects about phone calls, such as time and length of call. This data can be used in analytical applications.
Fill the form
Share:
Cloud solutions for SMEs

Cloud computing services or solutions, whether in Spain or anywhere else in the world, are infrastructures, platforms or systems that are used in the cloud.

Read More »
The Artificial Intelligence Law: A Brief Explanation

Since 2008, several countries have enacted legislation that recognizes the importance of integrating artificial intelligence (AI) into key areas of life [...]

Read More »
Artificial intelligence to build customer loyalty

In today's oversaturated information market, it is becoming increasingly difficult to retain users. For companies, competition is increasingly [...]

Read More »
Measuring Corporate Reputation Impact: The Case of Enigmia and its AI Solution

Hoy, 3 de octubre, hemos estado en los prestigiosos "Premios SCALEUPS B2B organizada por la Fundación Empresa y Sociedad, para hablaros de la Medici [...]

Read More »
See more entries
© Gamco 2021, All Rights Reserved - Legal notice - Privacy - Cookies