Latent Semantic Indexing (LSI)

Concept and definition

Latent Semantic Indexing (LSI)

What is Latent Semantic Indexing (LSI)?

Latent Semantic Indexing (LSI) is a technique used in natural language processing (NLP) to analyse and represent the meaning of a text.

LSI uses a mathematical model to identify patterns of similarity between words and documents, creating a vector representation of the text that reflects its semantic content.

This technique is commonly used in search engines and recommender systems to improve the accuracy of results and suggestions, as it can identify subtle semantic relationships between words and documents that are not evident in their literal form.

« Back to glossary

Do you want to get in touch?

CDRs contain data that a telecommunications company collects about phone calls, such as time and length of call. This data can be used in analytical applications.
Fill the form
Share:
The Digital Word-of-Mouth Effect: How Customer Reviews Impact Purchasing Decisions

In today's digital age, online customer reviews and comments have become a key factor influencing purchasing decisions.

Read More »
10 ways artificial intelligence helps businesses

There is a consensus among executives of the world's largest companies about the important impact that Artificial Intelligence (AI) will have on the [...]

Read More »
How to get more customers and less delinquency with Artificial Intelligence and Big Data

Fernando Pavón, CEO of Gamco and expert in Artificial Intelligence applied to business explains to us in the AceleraPYMES cycle how small companies can [...]

Read More »
How to meet customer needs

It is vital to understand, identify and satisfy customer needs. In this way, our business will be able to offer products and [...]

Read More »
See more entries
© Gamco 2021, All Rights Reserved - Legal notice - Privacy - Cookies