Feedback refers to information that is provided to a machine learning system or model after it has made a prediction or decision. Feedback is used to improve model performance by correcting errors and updating model parameters accordingly.
Feedback can be positive or negative, and can be provided in a supervised or unsupervised manner. In supervised learning, feedback is provided in the form of training labels that are used to adjust the model. In unsupervised learning, feedback is provided through comparison of model predictions with real-world observations.
Feedback is important in machine learning because it allows models to adapt and improve over time. Without feedback, models may stagnate at sub-optimal solutions and not be able to learn effectively from new data. In addition, feedback is also important for the evaluation of model performance, as it allows the comparison of model predictions with actual observations and the identification of possible errors or inconsistencies.
As e-commerce continues to grow at a dizzying pace, fraudsters are also finding new and sophisticated ways to exploit the potential [...]
Read More »5 Big Data challenges can be highlighted which are defined as V (volume, velocity, veracity, variety and value). R. Narasimhan discussed 3V with [...]
Read More »The first thing you need to know is the limits of AI and after mastering the basic concepts you will be able to build a large commercial software with intelligent [...]
Read More »In today's digital age, online customer reviews and comments have become a key factor influencing purchasing decisions.
Read More »