Feature selection

Concept and definition

Feature selection

What is Feature selection?

Feature selection is a process of selecting relevant and informative variables for a machine learning model, with the aim of improving the accuracy and generalisability of the model. Instead of using all available variables, the most relevant features are selected to reduce computational cost and improve model interpretation. Feature selection techniques include statistical, correlation and feature importance methods, among others. It is a technique commonly used in data pre-processing for machine learning.

« Back to glossary

Do you want to get in touch?

CDRs contain data that a telecommunications company collects about phone calls, such as time and length of call. This data can be used in analytical applications.
Fill the form
Share:
The most effective way to collect unpaid debts without complicating life

Collecting debts, nowadays, is becoming an arduous task for many companies or freelancers. More and more banks, debt collection [...]

Read More »
3 contributions of Artificial Intelligence to the telecommunications sector

Artificial intelligence is increasingly used and applied in many sectors, and as it could not be less, it has entered with force in the field of [...]

Read More »
AI in the energy sector: main use cases

There is a consensus among executives of the world's leading companies about the crucial impact that Artificial Intelligence (AI) will have on the [...]

Read More »
6 Advantages of cloud services

The massive implementation of cloud services in companies has transformed the way in which business transactions were carried out, since it has [...]

Read More »
See more entries
© Gamco 2021, All Rights Reserved - Legal notice - Privacy - Cookies