Feature selection

Concept and definition

Feature selection

What is Feature selection?

Feature selection is a process of selecting relevant and informative variables for a machine learning model, with the aim of improving the accuracy and generalisability of the model. Instead of using all available variables, the most relevant features are selected to reduce computational cost and improve model interpretation. Feature selection techniques include statistical, correlation and feature importance methods, among others. It is a technique commonly used in data pre-processing for machine learning.

« Back to glossary

Do you want to get in touch?

CDRs contain data that a telecommunications company collects about phone calls, such as time and length of call. This data can be used in analytical applications.
Fill the form
Share:
Types of artificial intelligence according to their capabilities and functionality 

Unlike a computer program, in which a list of commands are processed through a computer program, AI goes beyond the [...]

Read More »
AI, a new ally for telemarketing

The acquisition of new customers is one of the most important and difficult processes for a company. Traditionally, it has been necessary to resort to [...]

Read More »
Sales KPIs. What they are and which are the best

Achieving business goals and tracking success is an important aspect of improving any business. In sales, measuring the progress of [...]

Read More »
The 5 Challenges of Big Data in Machine Learning

5 Big Data challenges can be highlighted which are defined as V (volume, velocity, veracity, variety and value). R. Narasimhan discussed 3V with [...]

Read More »
See more entries
© Gamco 2021, All Rights Reserved - Legal notice - Privacy - Cookies