Feature selection

Concept and definition

Feature selection

What is Feature selection?

Feature selection is a process of selecting relevant and informative variables for a machine learning model, with the aim of improving the accuracy and generalisability of the model. Instead of using all available variables, the most relevant features are selected to reduce computational cost and improve model interpretation. Feature selection techniques include statistical, correlation and feature importance methods, among others. It is a technique commonly used in data pre-processing for machine learning.

« Back to glossary

Do you want to get in touch?

CDRs contain data that a telecommunications company collects about phone calls, such as time and length of call. This data can be used in analytical applications.
Fill the form
Share:
NPLs and recovery of delinquent portfolios

Normally the acronym NPLs (Non Performing Loans) is used in the financial sector and is a reality in Spanish banks as well as in banks [...].

Read More »
Thermonuclear fusion: Artificial intelligence from the frontiers of science to customer segmentation

Cheap, infinite, safe and clean energy Artificial Intelligence from Thermonuclear Fusion research to sales generation or [...]

Read More »
Differences: Machine Learning vs Artificial Intelligence

Artificial intelligence (AI) and machine learning (ML) are two of the most popular technologies used to build intelligent systems for the [...]

Read More »
When will artificial intelligence surpass human intelligence? 

Artificial intelligence is changing the world at breakneck speed and you're probably wondering when it will surpass artificial intelligence in the [...]

Read More »
See more entries
© Gamco 2021, All Rights Reserved - Legal notice - Privacy - Cookies