Error metrics used in modeling

Concept and definition

Error metrics used in modeling

What is Error metrics used in modeling?

In the context of modeling in artificial intelligence and machine learning, error metrics are measures used to assess the quality of predictive and classification models. These metrics allow quantifying the difference between model predictions and actual values, which allows comparing the performance of different models and selecting the best model for a specific task.

Some of the most common error metrics used in modeling are as follows:

  • Mean squared error (MSE): measures the average of the squared errors between predictions and actual values.
  • Root mean square error (RMSE): is the square root of the mean square error and is used to interpret the magnitude of the error in the same unit as the values of the target variable.
  • Mean absolute error (MAE): measures the mean of the absolute errors between predictions and actual values.
  • Median absolute error (MAD): measures the median of the absolute errors between predictions and actual values.
  • Coefficient of determination (R^2): measures the proportion of the variance in the data that is explained by the model.
  • Accuracy: measures the proportion of positive cases that were correctly classified.
  • Recall: measures the proportion of actual positive cases that were correctly identified by the model.
  • F1-score: is a measure of accuracy and recall, which combines both metrics into a single score.

These error metrics are valuable tools for evaluating the performance of artificial intelligence and machine learning models and adjusting their parameters to improve their accuracy and generalization.

The linked documents describe some of the most important error calculations used in the problems of prediction y classification.

Link | Knowledge Generation based on Machine Learning and Application in Different Sectors

« Back to glossary

Do you want to get in touch?

CDRs contain data that a telecommunications company collects about phone calls, such as time and length of call. This data can be used in analytical applications.
Fill the form
Share:
Market, privacy and artificial intelligence

Artificial Intelligence (AI) technologies are currently being used in companies to transform business processes, drive innovation and improve the quality of life of their [...]

Read More »
The future of automation thanks to Machine Learning

If you've ever wondered how Spotify recommends songs you like or how Siri and Alexa can understand what you say to them... the answer is that you can [...]

Read More »
How does semantic technology work?�

To know how semantic technology works, the first thing you need to know is that it is responsible for helping artificial intelligence systems [...]

Read More »
The best fraud detection software

Fraud detection software is an important tool for protecting companies and individuals from fraudulent activity and minimizing the risk of fraud.

Read More »
See more entries
© Gamco 2021, All Rights Reserved - Legal notice - Privacy - Cookies