Overfitting

Concept and definition

Overfitting

What is Overfitting?

Overfitting is a term used in machine learning to describe a model that has been overfitted to the training data, resulting in poor performance on new or unseen data. That is, the model has learned the training data "by heart", rather than capturing the underlying relationships in the data. This can occur when the model is too complex or is trained for too long, leading to an increased ability of the model to fit the training data rather than generalising to new data. Methods to avoid over-fitting include cross-validation, reducing model complexity and adding regularisation.

« Back to glossary

Do you want to get in touch?

CDRs contain data that a telecommunications company collects about phone calls, such as time and length of call. This data can be used in analytical applications.
Fill the form
Share:
Why predictive AI is key to a company's success

The integration of tools for predictive analytics is already commonplace in large companies, but thanks to the evolution and, above all, to the dem [...]

Read More »
BNPL - Buy Now Pay Later

The fad coming from the USA that will force the incorporation of AI in the process Surely it is only recently that we have started to hear a new concept in [...]

Read More »
Basic concepts for building commercial software with artificial intelligence

The first thing you need to know is the limits of AI and after mastering the basic concepts you will be able to build a large commercial software with intelligent [...]

Read More »
4 keys to identify customer needs

In order to identify the customer's needs, it is necessary to know their opinion, as this helps to detect where you should improve, what acceptance you [...]

Read More »
See more entries
© Gamco 2021, All Rights Reserved - Legal notice - Privacy - Cookies