Feature selection

Concept and definition

Feature selection

What is Feature selection?

Feature selection is a process of selecting relevant and informative variables for a machine learning model, with the aim of improving the accuracy and generalisability of the model. Instead of using all available variables, the most relevant features are selected to reduce computational cost and improve model interpretation. Feature selection techniques include statistical, correlation and feature importance methods, among others. It is a technique commonly used in data pre-processing for machine learning.

« Back to glossary

Do you want to get in touch?

CDRs contain data that a telecommunications company collects about phone calls, such as time and length of call. This data can be used in analytical applications.
Fill the form
Share:
Artificial intelligence against delinquency and non-payments in companies

The current scenario we are experiencing in Spain with the COVID-19 health crisis has led to many companies having to carry out ER [...]

Read More »
How AI can reduce product returns by 2023

Artificial intelligence (AI) solutions are valuable in reducing product returns. Through data analysis and decision [...]

Read More »
The most effective way to collect unpaid debts without complicating life

Collecting debts, nowadays, is becoming an arduous task for many companies or freelancers. More and more banks, debt collection [...]

Read More »
Why predictive AI is key to a company's success

The integration of tools for predictive analytics is already commonplace in large companies, but thanks to the evolution and, above all, to the dem [...]

Read More »
See more entries
© Gamco 2021, All Rights Reserved - Legal notice - Privacy - Cookies