Feature selection

Concept and definition

Feature selection

What is Feature selection?

Feature selection is a process of selecting relevant and informative variables for a machine learning model, with the aim of improving the accuracy and generalisability of the model. Instead of using all available variables, the most relevant features are selected to reduce computational cost and improve model interpretation. Feature selection techniques include statistical, correlation and feature importance methods, among others. It is a technique commonly used in data pre-processing for machine learning.

« Back to glossary

Do you want to get in touch?

CDRs contain data that a telecommunications company collects about phone calls, such as time and length of call. This data can be used in analytical applications.
Fill the form
Share:
How AI can reduce product returns by 2023

Artificial intelligence (AI) solutions are valuable in reducing product returns. Through data analysis and decision [...]

Read More »
Optimal order or assortment for a customer

In the previous articles ("Basic concepts to build a commercial software with artificial intelligence" and "How to materialize the opportun [...]

Read More »
Industry 4.0 key technologies

Industry 4.0 is the name given to the fourth industrial revolution, which is characterized by the inclusion of advanced technologies in production processes.

Read More »
Industry 4.0 and its main characteristics

Industry 4.0 or the Fourth Industrial Revolution is based on the integration of digital technologies in the production and processing of goods and services.

Read More »
See more entries
© Gamco 2021, All Rights Reserved - Legal notice - Privacy - Cookies