Anomaly detection

Concept and definition

Anomaly detection

What is Anomaly detection?

Anomaly detection is a machine learning technique used to identify unusual or anomalous patterns in data. The goal of anomaly detection is to find observations that deviate significantly from normal or expected behaviour.

In other words, anomaly detection is a technique that allows artificial intelligence systems to identify data that does not conform to expected patterns, which can be very useful in detecting fraud, security intrusions, system failures, and other unexpected events that may have a negative impact on the performance or security of a system.

Anomaly detection is a widely used technique in industry and can be applied to a variety of fields, such as critical infrastructure monitoring, disease detection in the medical field, error detection in industrial production, and financial data analysis.

« Back to glossary

Do you want to get in touch?

CDRs contain data that a telecommunications company collects about phone calls, such as time and length of call. This data can be used in analytical applications.
Fill the form
Share:
NPLs and recovery of delinquent portfolios

Normally the acronym NPLs (Non Performing Loans) is used in the financial sector and is a reality in Spanish banks as well as in banks [...].

Read More »
Clustering for data analysis

Clustering methods, or grouping, are a fundamental part of the data analysis process, since they allow an automatic segmentation of the data [...]

Read More »
How to increase a company's sales

All businesses usually plan for annual growth, although not all of them achieve it. Increasing the sales of a company in 2022 is [...]

Read More »
What is an ERP? Functions and why a company should have it

ERP stands for Enterprise Resource Planning and is a computerized planning and business management system capable of integrating the information [...]

Read More »
See more entries
© Gamco 2021, All Rights Reserved - Legal notice - Privacy - Cookies