Los outliers, o valores atípicos, son valores que se alejan significativamente de la mayoría de los demás valores en un conjunto de datos. En el contexto de la inteligencia artificial y el machine learning, los outliers pueden ser un problema importante porque pueden tener un efecto negativo en la precisión y la eficacia de los modelos de aprendizaje automático. Los outliers pueden ser el resultado de errores de medición, errores de entrada de datos o eventos raros y poco frecuentes en el entorno del conjunto de datos. Si no se manejan adecuadamente, los outliers pueden sesgar los modelos de aprendizaje automático y generar predicciones inexactas o insuficientes. Por lo tanto, es importante identificar y tratar los outliers en los conjuntos de datos antes de utilizarlos para entrenar modelos de aprendizaje automático. Los métodos comunes para manejar los outliers incluyen la eliminación de los valores atípicos, la transformación de los datos para reducir su impacto y el uso de modelos robustos que sean menos sensibles a los outliers.
Como consecuencia de esta situación de pandemia y económica en la que nos encontramos desde hace dos años, con la intención de proteger mejor los [...]
Leer más »La inteligencia empresarial, también conocida como "business intelligence" o BI, es un conjunto de técnicas, herramientas y metodologías que se uti [...]
Leer más »GAMCO es una empresa pionera en la creación de soluciones de software de Inteligencia Artificial y Aprendizaje Automático. Las soluciones de GAMCO p [...]
Leer más »La captación de nuevos clientes es uno de los procesos con mayor importancia y dificultad para una empresa. Tradicionalmente ha sido necesario recurr [...]
Leer más »