Los outliers, o valores atípicos, son valores que se alejan significativamente de la mayoría de los demás valores en un conjunto de datos. En el contexto de la inteligencia artificial y el machine learning, los outliers pueden ser un problema importante porque pueden tener un efecto negativo en la precisión y la eficacia de los modelos de aprendizaje automático. Los outliers pueden ser el resultado de errores de medición, errores de entrada de datos o eventos raros y poco frecuentes en el entorno del conjunto de datos. Si no se manejan adecuadamente, los outliers pueden sesgar los modelos de aprendizaje automático y generar predicciones inexactas o insuficientes. Por lo tanto, es importante identificar y tratar los outliers en los conjuntos de datos antes de utilizarlos para entrenar modelos de aprendizaje automático. Los métodos comunes para manejar los outliers incluyen la eliminación de los valores atípicos, la transformación de los datos para reducir su impacto y el uso de modelos robustos que sean menos sensibles a los outliers.
En este artículo vamos a centrarnos en cómo la inteligencia artificial (IA) puede aumentar la eficiencia y reducir los costes de su empresa mediante [...]
Leer más »Los métodos de clustering, o agrupamiento, son una pieza fundamental en el proceso de análisis de los datos, pues permiten una segmentación automá [...]
Leer más »El aprendizaje automático es una rama de la inteligencia artificial (IA) que se basa en conseguir que un sistema sea capaz de aprender a partir de la [...]
Leer más »Es de vital importancia comprender, identificar y satisfacer las necesidades de los clientes. De este modo, nuestro negocio podrá ofrecer productos y [...]
Leer más »