La función de base radial (RBF, por sus siglas en inglés) es una técnica utilizada en inteligencia artificial y machine learning para aproximar funciones y resolver problemas de clasificación y regresión. La FBR se basa en una función de núcleo que mide la similitud entre dos puntos en un espacio de características.
La FBR se utiliza a menudo en problemas de clasificación no lineales y en la interpolación de datos. La técnica se basa en el concepto de que las funciones pueden ser aproximadas por combinaciones lineales de funciones de base radial centradas en los datos de entrenamiento.
En la FBR, la función de núcleo define la influencia relativa de cada punto de entrenamiento en la aproximación de la función. Los puntos de entrenamiento más cercanos al punto de prueba tienen una influencia mayor en la función aproximada.
La FBR se utiliza a menudo en conjunto con el algoritmo de descenso del gradiente para optimizar los parámetros de la función de núcleo. También se utiliza en problemas de clustering y en la detección de outliers.
Como consecuencia de esta situación de pandemia y económica en la que nos encontramos desde hace dos años, con la intención de proteger mejor los [...]
Leer más »Muchas veces nos preguntamos dónde se aplica el Big Data y podemos suponer una gran relevancia de Big Data para los negocios. Esto explica el gran in [...]
Leer más »A medida que el comercio electrónico continúa creciendo a un ritmo vertiginoso, los estafadores también están encontrando nuevas y sofisticadas fo [...]
Leer más »El software de detección de fraude es una herramienta importante para proteger las empresas y los individuos de la actividad fraudulenta y minimizar [...]
Leer más »