El aprendizaje no supervisado es una técnica de machine learning donde se proporciona un conjunto de datos de entrada sin etiquetar al algoritmo, es decir, sin indicarle cuál es la salida esperada. El objetivo del algoritmo es identificar patrones o estructuras subyacentes en los datos de entrada y agruparlos de manera significativa. A diferencia del aprendizaje supervisado, en el que el algoritmo recibe datos etiquetados, en el aprendizaje no supervisado el algoritmo debe encontrar patrones y relaciones en los datos por sí mismo. Ejemplos comunes de técnicas de aprendizaje no supervisado son el clustering y la reducción de la dimensionalidad.
Antes de hablar de la inteligencia artificial en el mercado Fintech nos gustaría mencionar que el término Fintech se aplica hoy en día para las tec [...]
Leer más »El mundo está experimentando un crecimiento exponencial en la generación de datos con una escala cada vez mayor. Según IDC (International Data Corp [...]
Leer más »Antes de explicaros qué es la inteligencia artificial, nos gustaría empezar con la frase del libro Age of intelligent machines (1992), de Raymond Ku [...]
Leer más »En los anteriores artículos ("Conceptos base para construir un software comercial con inteligencia artificial" y "¿Cómo se materializan las oportun [...]
Leer más »