Aprendizaje no supervisado

Concepto y definición

Aprendizaje no supervisado

¿Qué es Aprendizaje no supervisado?

El aprendizaje no supervisado es una técnica de machine learning donde se proporciona un conjunto de datos de entrada sin etiquetar al algoritmo, es decir, sin indicarle cuál es la salida esperada. El objetivo del algoritmo es identificar patrones o estructuras subyacentes en los datos de entrada y agruparlos de manera significativa. A diferencia del aprendizaje supervisado, en el que el algoritmo recibe datos etiquetados, en el aprendizaje no supervisado el algoritmo debe encontrar patrones y relaciones en los datos por sí mismo. Ejemplos comunes de técnicas de aprendizaje no supervisado son el clustering y la reducción de la dimensionalidad.

« Volver al glosario

¿Quieres ponerte en contacto?

¡Nos encantaría saber de ti! Contáctanos completando el formulario que aparece a continuación y estaremos encantados de ayudarte.
Rellena el formulario
Compartir:
Clustering para analizar el dato

Los métodos de clustering, o agrupamiento, son una pieza fundamental en el proceso de análisis de los datos, pues permiten una segmentación automá [...]

Leer más »
¿Qué relación tiene el Big Data con el Aprendizaje Automático?

El mundo está experimentando un crecimiento exponencial en la generación de datos con una escala cada vez mayor. Según IDC (International Data Corp [...]

Leer más »
Cómo la Inteligencia Artificial está revolucionando el sector retail

La inteligencia artificial (IA), el Aprendizaje Automático (ML) y el análisis de datos están cambiando rápidamente y teniendo un gran impacto en e [...]

Leer más »
Sistema ERP vs CRM: ¿Cuál es la diferencia?

Si no sabes cuál es la diferencia entre un sistema ERP (Enterprise Resource Planning) y un sistema CRM (Customer Relationship Management), a continua [...]

Leer más »
Ver más entradas
© Gamco 2021, All Rights Reserved - Aviso legal - Privacidad - Cookies