Aprendizaje no supervisado

Concepto y definición

Aprendizaje no supervisado

¿Qué es Aprendizaje no supervisado?

El aprendizaje no supervisado es una técnica de machine learning donde se proporciona un conjunto de datos de entrada sin etiquetar al algoritmo, es decir, sin indicarle cuál es la salida esperada. El objetivo del algoritmo es identificar patrones o estructuras subyacentes en los datos de entrada y agruparlos de manera significativa. A diferencia del aprendizaje supervisado, en el que el algoritmo recibe datos etiquetados, en el aprendizaje no supervisado el algoritmo debe encontrar patrones y relaciones en los datos por sí mismo. Ejemplos comunes de técnicas de aprendizaje no supervisado son el clustering y la reducción de la dimensionalidad.

« Volver al glosario

¿Quieres ponerte en contacto?

¡Nos encantaría saber de ti! Contáctanos completando el formulario que aparece a continuación y estaremos encantados de ayudarte.
Rellena el formulario
Compartir:
Diferencias: Machine Learning vs Inteligencia Artificial

La inteligencia artificial (IA) y el aprendizaje automático (ML) son dos de las tecnologías más populares utilizadas para construir sistemas inteli [...]

Leer más »
Tipos de análisis que se realizan con Big Data

El análisis de big data es el proceso de analizar fuentes de datos grandes y complejas para descubrir tendencias, patrones, comportamientos de los cl [...]

Leer más »
Mejores Software de Inteligencia Artificial

Cada día tenemos más presente la inteligencia artificial en las empresas y su crecimiento prácticamente se aplica en todos los sectores. Cuando fin [...]

Leer más »
Oportunidad de negocio e inteligencia artificial

Las empresas son cada día más conscientes de la importancia de incorporar paulatinamente la inteligencia artificial a sus modelos de negocio. La imp [...]

Leer más »
Ver más entradas
© Gamco 2021, All Rights Reserved - Aviso legal - Privacidad - Cookies