El aprendizaje no supervisado es una técnica de machine learning donde se proporciona un conjunto de datos de entrada sin etiquetar al algoritmo, es decir, sin indicarle cuál es la salida esperada. El objetivo del algoritmo es identificar patrones o estructuras subyacentes en los datos de entrada y agruparlos de manera significativa. A diferencia del aprendizaje supervisado, en el que el algoritmo recibe datos etiquetados, en el aprendizaje no supervisado el algoritmo debe encontrar patrones y relaciones en los datos por sí mismo. Ejemplos comunes de técnicas de aprendizaje no supervisado son el clustering y la reducción de la dimensionalidad.
La inteligencia artificial (IA) puede cambiar la forma de gestionar los canales de ventas y clientes de las empresas fabricantes y distribuidoras de p [...]
Leer más »La Industria 4.0 o Cuarta Revolución Industrial se basa en la integración de tecnologías digitales en la producción y el procesamiento de bienes y [...]
Leer más »El análisis de big data es el proceso de analizar fuentes de datos grandes y complejas para descubrir tendencias, patrones, comportamientos de los cl [...]
Leer más »Como consecuencia de esta situación de pandemia y económica en la que nos encontramos desde hace dos años, con la intención de proteger mejor los [...]
Leer más »