El aprendizaje de cuantificación vectorial (LVQ, por sus siglas en inglés) es un algoritmo de aprendizaje supervisado inventado por Teuvo Kohonen, utilizado en el campo del aprendizaje automático para clasificar datos en conjuntos de clases predefinidos. LVQ es un tipo de red neuronal que se enfoca en dividir el espacio de características de los datos en regiones que corresponden a diferentes clases.
El proceso de LVQ implica la asignación de pesos a cada uno de los nodos de la red. Los pesos se ajustan durante la fase de entrenamiento para que el modelo pueda clasificar los datos de manera más efectiva. Este ajuste se basa en la medida de distancia al igual que el clasificador k-NN. Así pues, a través de un aprendizaje competitivo, el prototipo más cercano a la muestra de entrenamiento es el que será actualizado, alejándose o acercándose según favorezca los resultados de clasificación.
Durante la fase de predicción, el modelo utiliza los pesos de la red para asignar una clase a los nuevos casos que se le presentan.
Referencia :T. Kohonen. Learning vector quantization for pattern recognition.
A medida que el comercio electrónico continúa creciendo a un ritmo vertiginoso, los estafadores también están encontrando nuevas y sofisticadas fo [...]
Leer más »GAMCO es una empresa pionera en la creación de soluciones de software de Inteligencia Artificial y Aprendizaje Automático. Las soluciones de GAMCO p [...]
Leer más »Se pueden destacar 5 desafíos del Big Data que se definen como V (volumen, velocidad, veracidad, variedad y valor). R. Narasimhan debatió sobre 3V c [...]
Leer más »OpenAI es una empresa tecnológica creada por los principales líderes en inteligencia artificial que, en sus comienzos, se definía como una organiza [...]
Leer más »