El Análisis de Componentes Principales (ACP) es una técnica estadística de reducción de dimensionalidad que se utiliza para identificar patrones y estructuras subyacentes en conjuntos de datos multivariados. El ACP transforma un conjunto de variables correlacionadas en un conjunto de variables no correlacionadas llamadas componentes principales, que representan la mayor parte de la variabilidad en los datos originales.
El objetivo del ACP es reducir la dimensionalidad de los datos al proyectarlos en un espacio de menor dimensión mientras se retiene la mayor cantidad posible de información. Los componentes principales se calculan a partir de una matriz de covarianza o de correlación de las variables originales y se ordenan en función de su contribución relativa a la variabilidad total del conjunto de datos. Los componentes principales se utilizan luego para reconstruir los datos originales, lo que permite una representación reducida del conjunto de datos original.
El ACP se utiliza comúnmente en aplicaciones de machine learning para simplificar y comprimir datos, lo que facilita el análisis y la visualización. También se utiliza en la exploración de datos para descubrir patrones y estructuras subyacentes en grandes conjuntos de datos multivariados.
La inteligencia artificial está cambiando el mundo a una velocidad vertiginosa y seguro que te estarás preguntando cuándo superará la inteligencia [...]
Leer más »El software de detección de fraude es una herramienta importante para proteger las empresas y los individuos de la actividad fraudulenta y minimizar [...]
Leer más »La IA es la ciencia que marcará las diferencias entre dos compañías que compitan en el mismo sector. El aprendizaje automático y la inteligencia a [...]
Leer más »Las principales aplicaciones de IA como la mayoría de apps están al alcance de muchas empresas y permiten que grandes cantidades de datos sean anali [...]
Leer más »