AdaBoost (Adaptive Boosting) es un algoritmo de aprendizaje automático supervisado que se utiliza para mejorar la precisión de los modelos de clasificación débiles. El algoritmo de AdaBoost entrena iterativamente una secuencia de clasificadores débiles en diferentes subconjuntos de datos, asignando mayores pesos a los datos que se clasificaron incorrectamente en iteraciones anteriores. Luego, combina los resultados de estos clasificadores débiles en un clasificador fuerte ponderado, en el que los clasificadores débiles con un mejor rendimiento tienen un peso mayor en la clasificación final.
El algoritmo de AdaBoost es conocido por su capacidad para mejorar significativamente la precisión de los modelos de aprendizaje automático, especialmente en tareas de clasificación complejas con conjuntos de datos grandes y ruidosos. Además, es fácil de implementar y se puede adaptar a diferentes tipos de algoritmos de aprendizaje automático débiles, lo que lo hace popular en la práctica de aprendizaje automático.
Hoy en día la transformación digital es clave en cualquier tipo de negocio. El 40% de las empresas españolas no existirá en su forma actual en los [...]
Leer más »Para identificar las necesidades del cliente es necesario conocer su opinión, pues esto sirve para detectar dónde debes mejorar, qué aceptación te [...]
Leer más »La tecnología Blockchain o cadena de bloques es conocida sobre todo como la arquitectura informática en la que se basa el Bitcoin y otras criptomone [...]
Leer más »Data Mining es un proceso de exploración y análisis de grandes cantidades de datos, con el objetivo de descubrir patrones, relaciones y tendencias q [...]
Leer más »