AdaBoost (Adaptive Boosting) es un algoritmo de aprendizaje automático supervisado que se utiliza para mejorar la precisión de los modelos de clasificación débiles. El algoritmo de AdaBoost entrena iterativamente una secuencia de clasificadores débiles en diferentes subconjuntos de datos, asignando mayores pesos a los datos que se clasificaron incorrectamente en iteraciones anteriores. Luego, combina los resultados de estos clasificadores débiles en un clasificador fuerte ponderado, en el que los clasificadores débiles con un mejor rendimiento tienen un peso mayor en la clasificación final.
El algoritmo de AdaBoost es conocido por su capacidad para mejorar significativamente la precisión de los modelos de aprendizaje automático, especialmente en tareas de clasificación complejas con conjuntos de datos grandes y ruidosos. Además, es fácil de implementar y se puede adaptar a diferentes tipos de algoritmos de aprendizaje automático débiles, lo que lo hace popular en la práctica de aprendizaje automático.
Seguramente te estés preguntando ¿Qué es un seguro de caución? ¿Y cómo ayuda a tu empresa? Y es que, en el entorno económico actual, [...]
Leer más »Normalmente, el Aprendizaje Automático se utiliza para resolver problemas comerciales en diversos sectores y áreas donde se aplican diferentes algor [...]
Leer más »Existe consenso entre los directivos de las mayores compañías del mundo sobre el importante impacto que la Inteligencia Artificial (IA) va a tener e [...]
Leer más »El Procesamiento del Lenguaje Natural o NLP analiza cómo las máquinas entienden, interpretan y procesan el lenguaje humano.
Leer más »