AdaBoost (Adaptive Boosting) es un algoritmo de aprendizaje automático supervisado que se utiliza para mejorar la precisión de los modelos de clasificación débiles. El algoritmo de AdaBoost entrena iterativamente una secuencia de clasificadores débiles en diferentes subconjuntos de datos, asignando mayores pesos a los datos que se clasificaron incorrectamente en iteraciones anteriores. Luego, combina los resultados de estos clasificadores débiles en un clasificador fuerte ponderado, en el que los clasificadores débiles con un mejor rendimiento tienen un peso mayor en la clasificación final.
El algoritmo de AdaBoost es conocido por su capacidad para mejorar significativamente la precisión de los modelos de aprendizaje automático, especialmente en tareas de clasificación complejas con conjuntos de datos grandes y ruidosos. Además, es fácil de implementar y se puede adaptar a diferentes tipos de algoritmos de aprendizaje automático débiles, lo que lo hace popular en la práctica de aprendizaje automático.
Hoy en día la transformación digital es clave en cualquier tipo de negocio. El 40% de las empresas españolas no existirá en su forma actual en los [...]
Leer más »La inteligencia artificial (IA) y el aprendizaje automático (ML) son dos de las tecnologías más populares utilizadas para construir sistemas inteli [...]
Leer más »La captación de nuevos clientes potenciales es uno de los procesos con mayor importancia y dificultad para una empresa. Tradicionalmente ha sido nece [...]
Leer más »El escenario actual que estamos viviendo en España con la crisis sanitaria del COVID-19 ha provocado que muchas empresas hayan tenido que realizar ER [...]
Leer más »