AdaBoost (Adaptive Boosting) es un algoritmo de aprendizaje automático supervisado que se utiliza para mejorar la precisión de los modelos de clasificación débiles. El algoritmo de AdaBoost entrena iterativamente una secuencia de clasificadores débiles en diferentes subconjuntos de datos, asignando mayores pesos a los datos que se clasificaron incorrectamente en iteraciones anteriores. Luego, combina los resultados de estos clasificadores débiles en un clasificador fuerte ponderado, en el que los clasificadores débiles con un mejor rendimiento tienen un peso mayor en la clasificación final.
El algoritmo de AdaBoost es conocido por su capacidad para mejorar significativamente la precisión de los modelos de aprendizaje automático, especialmente en tareas de clasificación complejas con conjuntos de datos grandes y ruidosos. Además, es fácil de implementar y se puede adaptar a diferentes tipos de algoritmos de aprendizaje automático débiles, lo que lo hace popular en la práctica de aprendizaje automático.
Las predicciones de GAMCO apuntan a un aumento de, al menos, un 10% en el porcentaje de la «morosidad en créditos» a particulares durante el próxi [...]
Leer más »GAMCO es una empresa pionera en la creación de soluciones de software de Inteligencia Artificial y Aprendizaje Automático. Las soluciones de GAMCO p [...]
Leer más »Hoy, 3 de octubre, hemos estado en los prestigiosos "Premios SCALEUPS B2B organizada por la Fundación Empresa y Sociedad, para hablaros de la Medici [...]
Leer más »La inteligencia artificial (IA), el Aprendizaje Automático (ML) y el análisis de datos están cambiando rápidamente y teniendo un gran impacto en e [...]
Leer más »