AdaBoost (Adaptive Boosting) es un algoritmo de aprendizaje automático supervisado que se utiliza para mejorar la precisión de los modelos de clasificación débiles. El algoritmo de AdaBoost entrena iterativamente una secuencia de clasificadores débiles en diferentes subconjuntos de datos, asignando mayores pesos a los datos que se clasificaron incorrectamente en iteraciones anteriores. Luego, combina los resultados de estos clasificadores débiles en un clasificador fuerte ponderado, en el que los clasificadores débiles con un mejor rendimiento tienen un peso mayor en la clasificación final.
El algoritmo de AdaBoost es conocido por su capacidad para mejorar significativamente la precisión de los modelos de aprendizaje automático, especialmente en tareas de clasificación complejas con conjuntos de datos grandes y ruidosos. Además, es fácil de implementar y se puede adaptar a diferentes tipos de algoritmos de aprendizaje automático débiles, lo que lo hace popular en la práctica de aprendizaje automático.
Lograr las metas empresariales y hacer un seguimiento del éxito es un aspecto importante para mejorar en cualquier negocio. En ventas, medir el progr [...]
Leer más »El Procesamiento del Lenguaje Natural o NLP analiza cómo las máquinas entienden, interpretan y procesan el lenguaje humano.
Leer más »La web semántica o “internet del conocimiento” es una prolongación de la actual web. A diferencia de esta, la web semántica se basa en proporci [...]
Leer más »Si alguna vez te has preguntado cómo Spotify te recomienda canciones que te gustan o cómo Siri y Alexa pueden entender lo que les dices… la respue [...]
Leer más »