The validation set in the context of artificial intelligence and machine learning, refers to an independent dataset used to evaluate the ability of a trained model to generalise to previously unseen data.
Unlike the test set, the new or validation set is not used to tune the hyperparameters of the model, but is used to evaluate its final performance after the optimal hyperparameters have been selected. Therefore, the new or validation set is used to avoid over-fitting the test data and to obtain a more realistic assessment of the model's ability to generalise.
The new or validation set is used to select between alternative models and to tune the final model parameters prior to production deployment. The choice of the new or validation set and its appropriate size are critical to the model evaluation, as it must represent the data that the model will encounter in production.
Importantly, the new or validation set must also be independent of the training set and test set to ensure that the model has not previously seen the validation data during its training or pre-evaluation.
The massive implementation of cloud services in companies has transformed the way in which business transactions were carried out, since it has [...]
Read More »Today we are going to explain the differences between a traditional CRM (Customer Relationship Management) and an intelligent CRM by applying technology that [...]
Read More »If you don't know the difference between an ERP (Enterprise Resource Planning) system and a CRM (Customer Relationship Management) system, here's what you need to know about the [...]
Read More »Normally the acronym NPLs (Non Performing Loans) is used in the financial sector and is a reality in Spanish banks as well as in banks [...].
Read More »Here you can edit your cookie preferences for this website.
Advertising cookies are used to deliver relevant advertisements and marketing campaigns to visitors. These cookies track visitors across all websites and collect information to deliver personalized advertisements.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as number of visitors, bounce rate, traffic source, etc.
Functional cookies help to perform certain functionalities such as sharing website content on social media platforms, collecting feedback and other third party features.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure the basic functionalities and security features of the website, anonymously.
Other non-categorized cookies are those that are being analyzed and have not yet been classified in a category.