A Recurrent Neural Network (RNN) is a type of artificial neural network used to process sequential or temporal data. Unlike feedforward neural networks, in which information flows in one direction only, in RNNs information flows in a loop, i.e. the output at one point in time is used as input at the next point in time.
The ability to process data streams makes them useful for a wide variety of applications, such as speech recognition, machine translation and text generation. One of the main features of RNNs is their ability to model long-term dependencies in data streams.
RNNs have a recurrent structure, which allows information to flow from one layer to another through a hidden state, which stores information about previous states. The hidden state is updated at each time step and is used to influence the output at the next time step. This allows the RNN to have long-term memory and be able to capture patterns in data sequences that extend over time.
The term artificial intelligence (AI) is nowadays, but it was invented in 1956 by John McCarthy, Marvin Minsky and Claude Shannon in the famous [...]
Read More »A few days ago we were able to attend a pioneering event in the world of Retail, the Retail Future 2022 fair. In its fifth edition, and under the slogan "Challenge [...]
Read More »There is a broad consensus among executives of the world's leading companies about the impact that artificial intelligence is going to have on business and [...]
Read More »Achieving business goals and tracking success is an important aspect of improving any business. In sales, measuring the progress of [...]
Read More »