Minimum Classification Error - MCE

Concept and definition

Minimum Classification Error - MCE

What is Minimum Classification Error - MCE?

Minimum classification error (MCE) is a measure of the quality of a classification model in artificial intelligence and machine learning. This measure refers to the lowest error rate that can be achieved when classifying data from a test set.

The MCE is used to assess the ability of a classification model to generalize to new and unseen data, known as generalizability. A model with a low MCE is able to correctly classify most test data and has better generalization ability than a model with a high MCE.

The MCE is determined by comparing the model predictions with the actual labels of the test data. Classification error is defined as the proportion of examples that are misclassified. The MCE is achieved when the minimum possible classification error value is found for the model, implying that the model is as accurate as possible in the classification task.

The MCE is an important measure in the development and evaluation of classification models in artificial intelligence and machine learning, as it allows comparing the quality of different models and selecting the best one for a specific task. In addition, the MCE can help identify areas where the model needs improvement to improve its generalization capability.

It can also be considered as a variant of the LVQ (Learning Vector Quantization) method. In this sense, MCE is a training technique that uses the minimum classification error criterion to adjust the weights of the coding vectors in the LVQ network. The goal of MCE is to minimize the classification error rate, i.e., the proportion of incorrectly classified samples. MCE uses a cost function that measures the discrepancy between the network output and the expected value of the output for each training sample.

MCE is used in binary and multiclass classification problems, and is useful when the number of training samples is limited or when the classes are unbalanced.

Reference: Biing-Hwang Juang and Shigeru Katagiri. Discriminative learning for minimum error classication..

« Back to glossary

Do you want to get in touch?

CDRs contain data that a telecommunications company collects about phone calls, such as time and length of call. This data can be used in analytical applications.
Fill the form
Share:
What is artificial intelligence?

Before explaining what artificial intelligence is, we would like to start with a sentence from the book Age of intelligent machines (1992), by Raymond Ku [...]

Read More »
Clustering for data analysis

Clustering methods, or grouping, are a fundamental part of the data analysis process, since they allow an automatic segmentation of the data [...]

Read More »
The future of automation thanks to Machine Learning

If you've ever wondered how Spotify recommends songs you like or how Siri and Alexa can understand what you say to them... the answer is that you can [...]

Read More »
Artificial intelligence in the telecommunications sector

There is a broad consensus among executives of the world's leading companies about the impact that artificial intelligence is going to have on business and [...]

Read More »
See more entries
© Gamco 2021, All Rights Reserved - Legal notice - Privacy - Cookies