Explainability refers to the ability of a machine learning model to be understood and explained in a clear and understandable way by humans. Explainability is important because many machine learning models are very complex and difficult to interpret, which can make it difficult to understand how decisions or predictions are arrived at.
Explainability is particularly important in critical applications where it is necessary to understand how decisions are made, such as fraud detection or medical decision-making. Machine learning models that are highly explainable allow subject matter experts to understand how decisions are made and explain them to others in an understandable way.
Several techniques exist to increase the explainability of machine learning models, such as data visualisation, model simplification, identification of important features, and interpretation of the decisions made by the model. In addition, explainability can also be improved by using machine learning models that are inherently more explainable, such as rule-based models and linear models.
There is a broad consensus among executives of the world's leading companies about the impact that artificial intelligence is going to have on business and [...]
Read More »The semantic web or "internet of knowledge" is an extension of the current web. Unlike the latter, the semantic web is based on proportional [...]
Read More »An article published in April 2021 by Óscar Jiménez El Confidencial, was titled "34,000 M prize for banks for applying well i [...]
Read More »Artificial Intelligence is transforming the way in which companies relate to their customers, how work is managed, the way they work, the way in which [...]
Read More »