In the context of modeling in artificial intelligence and machine learning, error metrics are measures used to assess the quality of predictive and classification models. These metrics allow quantifying the difference between model predictions and actual values, which allows comparing the performance of different models and selecting the best model for a specific task.
Some of the most common error metrics used in modeling are as follows:
These error metrics are valuable tools for evaluating the performance of artificial intelligence and machine learning models and adjusting their parameters to improve their accuracy and generalization.
The linked documents describe some of the most important error calculations used in the problems of prediction y classification.
Link | Knowledge Generation based on Machine Learning and Application in Different Sectors
The current scenario we are experiencing in Spain with the COVID-19 health crisis has led to many companies having to carry out ER [...]
Read More »Unlike a computer program, in which a list of commands are processed through a computer program, AI goes beyond the [...]
Read More »An article published in April 2021 by Óscar Jiménez El Confidencial, was titled "34,000 M prize for banks for applying well i [...]
Read More »Companies are increasingly aware of the importance of properly analyzing and managing the huge amount of data they store on a daily basis.
Read More »