Deep learning is a branch of machine learning that relies on multi-layered artificial neural networks to learn and extract features from data. Unlike conventional machine learning, which relies on algorithms that require features to be defined manually, deep learning allows models to learn autonomously from raw data.
The artificial neural networks used in deep learning are composed of multiple layers of interconnected neurons, each of which processes a portion of the data and the extracted features are used in subsequent layers to extract more complex features. This process is repeated at each layer until the most abstract features are extracted from the dataset.
Deep learning is used in a variety of applications, such as computer vision, natural language processing, machine translation, fraud detection, object identification, among others. Due to its ability to learn autonomously and its high accuracy in identifying complex patterns in data, deep learning has become a powerful tool in the field of artificial intelligence and machine learning.
Reference: Yoshua Bengio. Learning Deep Architectures for AI.
Artificial intelligence (AI) and machine learning (ML) are two of the most popular technologies used to build intelligent systems for the [...]
Read More »Hoy, 3 de octubre, hemos estado en los prestigiosos "Premios SCALEUPS B2B organizada por la Fundación Empresa y Sociedad, para hablaros de la Medici [...]
Read More »Collecting debts, nowadays, is becoming an arduous task for many companies or freelancers. More and more banks, debt collection [...]
Read More »Fraud detection software is an important tool for protecting companies and individuals from fraudulent activity and minimizing the risk of fraud.
Read More »