In the context of machine learning and artificial intelligence, a Pipeline is a sequence of steps that are executed in order to process and transform data before applying a machine learning model. Each step in the Pipeline is a data transformation that is applied to the input data and passes the transformed data to the next step in the pipeline.
Pipelining is a common technique in machine learning because it allows data scientists to automate the data preparation process, reduce the risk of errors and increase the reproducibility of results. For example, a Pipeline could include steps to pre-process data, such as normalisation or coding of categorical variables, followed by feature selection and hyperparameter optimisation before applying a machine learning model.
In addition to helping automate the data preparation process, the Pipeline can also help speed up the development of machine learning models by allowing data scientists to experiment with different data transformations and models without having to write repetitive code for each iteration. Popular machine learning libraries such as Scikit-learn in Python provide implementations of Pipeline that make it easy for data scientists and analysts to use.
In the dynamic financial world, optimizing the return on available assets is essential to the success of any lender. Gam [...]
Read More »The term artificial intelligence (AI) is nowadays, but it was invented in 1956 by John McCarthy, Marvin Minsky and Claude Shannon in the famous [...]
Read More »The massive implementation of cloud services in companies has transformed the way in which business transactions were carried out, since it has [...]
Read More »There is a consensus among executives of the world's leading companies about the crucial impact that Artificial Intelligence (AI) will have on the [...]
Read More »Here you can edit your cookie preferences for this website.
Advertising cookies are used to deliver relevant advertisements and marketing campaigns to visitors. These cookies track visitors across all websites and collect information to deliver personalized advertisements.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as number of visitors, bounce rate, traffic source, etc.
Functional cookies help to perform certain functionalities such as sharing website content on social media platforms, collecting feedback and other third party features.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure the basic functionalities and security features of the website, anonymously.
Other non-categorized cookies are those that are being analyzed and have not yet been classified in a category.