Named Entity Recognition (NER) is a Natural Language Processing (NLP) technique that consists of identifying and classifying named entities in a text.
Named entities can be any real-world object that has a name of its own, such as people, organisations, locations, dates, times, currencies, among others.
The goal of NER is to identify these entities in a text and classify them into different categories, which can be useful in applications such as sentiment analysis, information extraction, text summarisation, among others.
NER is based on machine learning algorithms that analyse the linguistic features of a text to identify patterns and make decisions about the presence and classification of named entities in it.
The commercial optimization software based on artificial intelligence must have feedback of the commercial actions carried out, of the nu [...]
Read More »If you don't know the difference between an ERP (Enterprise Resource Planning) system and a CRM (Customer Relationship Management) system, here's what you need to know about the [...]
Read More »Clustering methods, or grouping, are a fundamental part of the data analysis process, since they allow an automatic segmentation of the data [...]
Read More »A few days ago we were able to attend a pioneering event in the world of Retail, the Retail Future 2022 fair. In its fifth edition, and under the slogan "Challenge [...]
Read More »