Token classification refers to the process of assigning a label or category to each token or element in a text stream. Tokens can be individual words, numbers, symbols and other elements in a text. Token classification is commonly used in natural language processing and machine learning for tasks such as sentiment analysis, information extraction and document classification.
Token classification involves labelling each token with a specific category based on its meaning or function in the text. For example, in a sentence, verbs can be labelled as "VERB", nouns as "NOUN", adjectives as "ADJECTIVE", and so on.
To perform token classification, machine learning algorithms, such as neural network-based classification models, are used, which can learn to assign categories to tokens based on text features and labels already existing in a training dataset.
Token classification is a fundamental technique in natural language processing and is essential for many applications, such as text generation, machine translation, natural language understanding and sentiment analysis in social networks.
Hoy, 3 de octubre, hemos estado en los prestigiosos "Premios SCALEUPS B2B organizada por la Fundación Empresa y Sociedad, para hablaros de la Medici [...]
Read More »The world is experiencing exponential growth in data generation on an ever-increasing scale. According to IDC (International Data Corp.
Read More »An article published in April 2021 by Óscar Jiménez El Confidencial, was titled "34,000 M prize for banks for applying well i [...]
Read More »The banking sector has undergone considerable transformations over the past 10 years. Especially as banking has become more integrated and [...]
Read More »