La trazabilidad en el contexto de la inteligencia artificial y el aprendizaje automático se refiere a la capacidad de seguir el proceso de entrenamiento de un modelo y rastrear su desempeño y resultados en diferentes etapas del proceso.
La trazabilidad es importante en el aprendizaje automático porque permite a los desarrolladores y usuarios del modelo comprender cómo se ha creado el modelo, qué datos se han utilizado para entrenarlo, qué técnicas de preprocesamiento se han aplicado a los datos, qué algoritmos de aprendizaje automático se han utilizado y cómo se ha evaluado su desempeño.
La trazabilidad también es importante para garantizar la transparencia y la responsabilidad en el desarrollo y la implementación de modelos de aprendizaje automático, especialmente en áreas sensibles como la toma de decisiones críticas en la atención médica, la justicia penal y la seguridad pública.
En resumen, la trazabilidad es un aspecto clave en el desarrollo y la implementación de modelos de aprendizaje automático, ya que permite a los desarrolladores y usuarios del modelo comprender y evaluar el proceso de entrenamiento y los resultados del modelo.
El término Business Intelligence (o BI) define el uso de tecnologías de la información para identificar, descubrir y analizar datos comerciales, co [...]
Leer más »La inteligencia artificial (IA), el Aprendizaje Automático (ML) y el análisis de datos están cambiando rápidamente y teniendo un gran impacto en e [...]
Leer más »Los métodos de clustering, o agrupamiento, son una pieza fundamental en el proceso de análisis de los datos, pues permiten una segmentación automá [...]
Leer más »Las empresas son cada vez más conscientes de la importancia de analizar y gestionar adecuadamente la ingente cantidad de datos que almacenan día tra [...]
Leer más »