Aprendizaje no supervisado

Concepto y definición

Aprendizaje no supervisado

¿Qué es Aprendizaje no supervisado?

El aprendizaje no supervisado es una técnica de machine learning donde se proporciona un conjunto de datos de entrada sin etiquetar al algoritmo, es decir, sin indicarle cuál es la salida esperada. El objetivo del algoritmo es identificar patrones o estructuras subyacentes en los datos de entrada y agruparlos de manera significativa. A diferencia del aprendizaje supervisado, en el que el algoritmo recibe datos etiquetados, en el aprendizaje no supervisado el algoritmo debe encontrar patrones y relaciones en los datos por sí mismo. Ejemplos comunes de técnicas de aprendizaje no supervisado son el clustering y la reducción de la dimensionalidad.

« Volver al glosario

¿Quieres ponerte en contacto?

¡Nos encantaría saber de ti! Contáctanos completando el formulario que aparece a continuación y estaremos encantados de ayudarte.
Rellena el formulario
Compartir:
Por qué la IA predictiva es clave para el éxito de una empresa

La integración de herramientas para análisis predictivo es ya habitual en las grandes empresas, pero gracias a la evolución y, sobre todo, a la dem [...]

Leer más »
La Ley de Inteligencia Artificial: una breve explicación

Desde 2008, varios países han promulgado leyes que reconocen la importancia de integrar la inteligencia artificial (IA) en ámbitos clave de la vida [...]

Leer más »
El papel del aprendizaje automático en la detección de fraudes

El aprendizaje automático es una rama de la inteligencia artificial (IA) que se basa en conseguir que un sistema sea capaz de aprender a partir de la [...]

Leer más »
¿Qué es el minado de Datos o Data Mining?

Data Mining es un proceso de exploración y análisis de grandes cantidades de datos, con el objetivo de descubrir patrones, relaciones y tendencias q [...]

Leer más »
Ver más entradas
© Gamco 2021, All Rights Reserved - Aviso legal - Privacidad - Cookies