 
Los valores categóricos son aquellos que representan una categoría o grupo de datos, en contraste con los valores numéricos, que representan cantidades. En el aprendizaje automático, los valores categóricos son importantes porque muchos algoritmos requieren que los datos sean representados numéricamente.
Por ejemplo, los valores categóricos pueden representar la marca de un automóvil, el color de un producto, la categoría de una imagen o el tipo de una pregunta. Estos valores pueden ser representados como cadenas de caracteres o como números enteros que representan una categoría particular.
Cuando se procesan valores categóricos en un modelo de aprendizaje automático, es necesario codificarlos en una forma numérica que pueda ser interpretada por el algoritmo. Una técnica común para la codificación de valores categóricos es la codificación one-hot, que convierte cada valor categórico en un vector binario en el que solo uno de los elementos es "1" y los demás son "0".
Es importante tener en cuenta que la elección de la codificación adecuada de los valores categóricos puede afectar significativamente el rendimiento del modelo de aprendizaje automático.
Los métodos de clustering, o agrupamiento, son una pieza fundamental en el proceso de análisis de los datos, pues permiten una segmentación automá [...]
Leer más »Las empresas son cada vez más conscientes de la importancia de analizar y gestionar adecuadamente la ingente cantidad de datos que almacenan día tra [...]
Leer más »El aprendizaje automático es una rama de la inteligencia artificial (IA) que se basa en conseguir que un sistema sea capaz de aprender a partir de la [...]
Leer más »La inteligencia artificial (IA) y el aprendizaje automático (ML) son dos de las tecnologías más populares utilizadas para construir sistemas inteli [...]
Leer más »