La validación cruzada es una técnica utilizada en el aprendizaje automático para evaluar el rendimiento de un modelo estadístico, y para estimar la precisión del modelo en nuevos conjuntos de datos que no se han utilizado para entrenar el modelo.
La validación cruzada se realiza dividiendo el conjunto de datos en un conjunto de entrenamiento y un conjunto de validación. El modelo se entrena con el conjunto de entrenamiento y se evalúa con el conjunto de validación. Este proceso se repite varias veces, con diferentes divisiones de los datos en conjuntos de entrenamiento y validación. Al final, se promedian los resultados de las diferentes evaluaciones para obtener una medida más precisa del rendimiento del modelo.
La validación cruzada es una técnica útil para evitar el sobreajuste (overfitting) en el modelo, ya que permite evaluar su capacidad de generalización. La técnica también puede ser útil en la selección de modelos y en la optimización de los parámetros del modelo.
Existen varios tipos de validación cruzada, incluyendo la validación cruzada k-fold, la validación cruzada leave-one-out, y la validación cruzada estratificada. Cada tipo tiene sus propias características y puede ser más adecuado para ciertas aplicaciones.
El chargeback hace referencia a las devoluciones que ocurren cuando, a petición del titular de una tarjeta, el banco solicita en su nombre un reembol [...]
Leer más »La inteligencia artificial (IA), el Aprendizaje Automático (ML) y el análisis de datos están cambiando rápidamente y teniendo un gran impacto en e [...]
Leer más »Hoy vamos a hablar sobre la generación de leads cualificados para la captación de nuevos clientes mediante IA. En Gamco desarrollamos software basad [...]
Leer más »Tras las revoluciones lideradas por el carbón, la electricidad y luego la electrónica, la sociedad está presenciando ahora una cuarta revolución i [...]
Leer más »