En el procesamiento del lenguaje natural, un tokenizador es una herramienta que se utiliza para dividir un texto en unidades discretas llamadas "tokens". Un token puede ser una palabra, una puntuación, un número, un símbolo u otra unidad significativa en el texto. El objetivo del tokenizador es preparar el texto para el análisis y el modelado en el aprendizaje automático.
Existen diferentes tipos de tokenizadores, incluyendo los basados en reglas y los basados en el aprendizaje automático. Los tokenizadores basados en reglas utilizan patrones predefinidos para dividir el texto en tokens, mientras que los tokenizadores basados en el aprendizaje automático utilizan modelos de lenguaje para identificar patrones y estructuras en el texto y dividirlo en tokens.
Los tokenizadores son una herramienta importante en el procesamiento del lenguaje natural, ya que la representación adecuada de los datos de entrada es fundamental para el entrenamiento de modelos de aprendizaje automático precisos.
En los anteriores artículos ("Conceptos base para construir un software comercial con inteligencia artificial" y "¿Cómo se materializan las oportun [...]
Leer más »Si alguna vez te has preguntado cómo Spotify te recomienda canciones que te gustan o cómo Siri y Alexa pueden entender lo que les dices… la respue [...]
Leer más »El contenido de este artículo sintetiza parte del capítulo “Concepto y breve historia de la Inteligencia Artificial” de la tesis Generación de [...]
Leer más »En la era digital en la que vivimos, la inteligencia artificial (IA) ha emergido como una fuerza disruptiva en numerosas industrias, y el sector banca [...]
Leer más »