La red neuronal de OJA, también conocida como red neuronal de Oja's rule, es un tipo de red neuronal artificial que se utiliza para el aprendizaje no supervisado en problemas de reducción de dimensiones y análisis de componentes principales.
Fue desarrollada por el matemático finlandés Erkki Oja en 1982 y se basa en un algoritmo de aprendizaje que permite a la red neuronal encontrar las direcciones principales de las características de entrada y reducir la dimensión de los datos. En comparación con otros métodos de reducción de dimensiones, la red neuronal de OJA es capaz de manejar mejor datos altamente correlacionados y no lineales.
El funcionamiento de la red neuronal de OJA se basa en el ajuste de los pesos sinápticos de la red para que la neurona de salida responda de manera selectiva a patrones específicos de entrada. Esto se logra mediante el cálculo iterativo de los pesos sinápticos para maximizar la correlación entre las entradas y la salida de la neurona.
El contenido de este artículo sintetiza parte del capítulo “Concepto y breve historia de la Inteligencia Artificial” de la tesis Generación de [...]
Leer más »El término inteligencia artificial (IA) es pura actualidad, pero fue inventado en 1956 por John McCarthy, Marvin Minsky y Claude Shannon en la famosa [...]
Leer más »Antes de explicaros qué es la inteligencia artificial, nos gustaría empezar con la frase del libro Age of intelligent machines (1992), de Raymond Ku [...]
Leer más »Lograr las metas empresariales y hacer un seguimiento del éxito es un aspecto importante para mejorar en cualquier negocio. En ventas, medir el progr [...]
Leer más »