La Permutation importance es una técnica utilizada en el aprendizaje automático para evaluar la importancia relativa de las características (features) en un modelo de predicción. La idea es medir el impacto de la eliminación o permutación aleatoria de una característica en el rendimiento del modelo. En general, cuanto mayor sea la disminución del rendimiento del modelo después de la eliminación o permutación de una característica, mayor será su importancia para el modelo.
La Permutation importance es útil porque ayuda a identificar las características que son más relevantes para un problema de predicción en particular, lo que puede guiar la selección de características y la optimización de modelos. Además, puede ser utilizada con diferentes algoritmos de aprendizaje automático, incluyendo árboles de decisión, modelos lineales y redes neuronales.
La Permutation importance puede ser computacionalmente costosa, ya que implica entrenar y evaluar el modelo varias veces. Sin embargo, existen implementaciones eficientes de la técnica disponibles en bibliotecas de aprendizaje automático como Scikit-learn en Python, lo que hace que sea fácil de usar para científicos de datos y analistas.
Desde 2008, varios países han promulgado leyes que reconocen la importancia de integrar la inteligencia artificial (IA) en ámbitos clave de la vida [...]
Leer más »Una vez que se tenga claro los conceptos base para construir un software comercial con inteligencia artificial donde se define a quién dedicar esfuer [...]
Leer más »La captación de nuevos clientes es uno de los procesos con mayor importancia y dificultad para una empresa. Tradicionalmente ha sido necesario recurr [...]
Leer más »En el dinámico mundo financiero, optimizar la rentabilidad de los activos disponibles es esencial para el éxito de cualquier entidad crediticia. Gam [...]
Leer más »