La Permutation importance es una técnica utilizada en el aprendizaje automático para evaluar la importancia relativa de las características (features) en un modelo de predicción. La idea es medir el impacto de la eliminación o permutación aleatoria de una característica en el rendimiento del modelo. En general, cuanto mayor sea la disminución del rendimiento del modelo después de la eliminación o permutación de una característica, mayor será su importancia para el modelo.
La Permutation importance es útil porque ayuda a identificar las características que son más relevantes para un problema de predicción en particular, lo que puede guiar la selección de características y la optimización de modelos. Además, puede ser utilizada con diferentes algoritmos de aprendizaje automático, incluyendo árboles de decisión, modelos lineales y redes neuronales.
La Permutation importance puede ser computacionalmente costosa, ya que implica entrenar y evaluar el modelo varias veces. Sin embargo, existen implementaciones eficientes de la técnica disponibles en bibliotecas de aprendizaje automático como Scikit-learn en Python, lo que hace que sea fácil de usar para científicos de datos y analistas.
El auge de la Inteligencia Artificial (IA) en los negocios está muy de actualidad. Su uso se está extendiendo y está cambiando, incluso, los modelo [...]
Leer más »El deep learning se traduce como aprendizaje profundo y es un tipo de inteligencia artificial (IA) que se encuentra englobado dentro del machine learn [...]
Leer más »La IA es la ciencia que marcará las diferencias entre dos compañías que compitan en el mismo sector. El aprendizaje automático y la inteligencia a [...]
Leer más »La Inteligencia Artificial está transformando la forma en la cual las empresas se relacionan con sus clientes, cómo se gestiona el trabajo, el talen [...]
Leer más »