La Permutation importance es una técnica utilizada en el aprendizaje automático para evaluar la importancia relativa de las características (features) en un modelo de predicción. La idea es medir el impacto de la eliminación o permutación aleatoria de una característica en el rendimiento del modelo. En general, cuanto mayor sea la disminución del rendimiento del modelo después de la eliminación o permutación de una característica, mayor será su importancia para el modelo.
La Permutation importance es útil porque ayuda a identificar las características que son más relevantes para un problema de predicción en particular, lo que puede guiar la selección de características y la optimización de modelos. Además, puede ser utilizada con diferentes algoritmos de aprendizaje automático, incluyendo árboles de decisión, modelos lineales y redes neuronales.
La Permutation importance puede ser computacionalmente costosa, ya que implica entrenar y evaluar el modelo varias veces. Sin embargo, existen implementaciones eficientes de la técnica disponibles en bibliotecas de aprendizaje automático como Scikit-learn en Python, lo que hace que sea fácil de usar para científicos de datos y analistas.
Los servicios o las soluciones en la nube (cloud computing), ya sea en España o en cualquier parte del mundo, son infraestructuras, plataformas o sis [...]
Leer más »La IA es la ciencia que marcará las diferencias entre dos compañías que compitan en el mismo sector. El aprendizaje automático y la inteligencia a [...]
Leer más »Energía barata, infinita, segura y limpia La Inteligencia Artificial desde la investigación de la Fusión Termonuclear a la generación de ventas o [...]
Leer más »La moda que viene de USA y obligará a incorporar la IA en el proceso Seguramente hace poco tiempo que hemos empezado a escuchar un nuevo concepto en [...]
Leer más »