La Permutation importance es una técnica utilizada en el aprendizaje automático para evaluar la importancia relativa de las características (features) en un modelo de predicción. La idea es medir el impacto de la eliminación o permutación aleatoria de una característica en el rendimiento del modelo. En general, cuanto mayor sea la disminución del rendimiento del modelo después de la eliminación o permutación de una característica, mayor será su importancia para el modelo.
La Permutation importance es útil porque ayuda a identificar las características que son más relevantes para un problema de predicción en particular, lo que puede guiar la selección de características y la optimización de modelos. Además, puede ser utilizada con diferentes algoritmos de aprendizaje automático, incluyendo árboles de decisión, modelos lineales y redes neuronales.
La Permutation importance puede ser computacionalmente costosa, ya que implica entrenar y evaluar el modelo varias veces. Sin embargo, existen implementaciones eficientes de la técnica disponibles en bibliotecas de aprendizaje automático como Scikit-learn en Python, lo que hace que sea fácil de usar para científicos de datos y analistas.
Para saber cómo funciona la tecnología semántica, lo primero que debes saber es que se encarga de ayudar a los sistemas de inteligencia artificial [...]
Leer más »Hoy vamos a hablar sobre la generación de leads cualificados para la captación de nuevos clientes mediante IA. En Gamco desarrollamos software basad [...]
Leer más »El deep learning se traduce como aprendizaje profundo y es un tipo de inteligencia artificial (IA) que se encuentra englobado dentro del machine learn [...]
Leer más »El chargeback hace referencia a las devoluciones que ocurren cuando, a petición del titular de una tarjeta, el banco solicita en su nombre un reembol [...]
Leer más »