El Perceptrón es un algoritmo de aprendizaje supervisado utilizado en el campo del aprendizaje automático. Fue uno de los primeros modelos de red neuronal desarrollados y es utilizado como base para otros modelos más complejos.
El Perceptrón consiste en un solo nodo de procesamiento que acepta múltiples entradas y produce una única salida. El nodo realiza una serie de cálculos ponderando las entradas y sumándolas, y luego aplica una función de activación para producir la salida. El algoritmo utiliza un conjunto de datos de entrenamiento para ajustar los pesos de las entradas, de manera que la salida se aproxime a la salida deseada.
El Perceptrón es especialmente útil en problemas de clasificación binaria, es decir, problemas en los que se busca clasificar elementos en dos categorías. Sin embargo, su capacidad de generalización es limitada, por lo que no es adecuado para problemas más complejos. A pesar de esto, el Perceptrón sigue siendo una herramienta valiosa en el aprendizaje automático y se utiliza como base para modelos más avanzados, como las redes neuronales multicapa.
El Churn, o la tasa de pérdida de clientes, representa un desafío constante para las empresas actuales. La capacidad para retener a los clientes exi [...]
Leer más »La Inteligencia Artificial (IA) deriva en una serie de modelos o ramas que se pueden emplear en diferentes ámbitos de la vida de las personas así co [...]
Leer más »Existe consenso entre los directivos de las principales empresas del mundo acerca del impacto crucial que la Inteligencia Artificial (IA) en el sector [...]
Leer más »Las oportunidades de negocio están en todas partes y muchas veces no sabemos cuales son los sectores con mayor potencial para el emprendimiento.  [...]
Leer más »