Una matriz de confusión es una tabla que se utiliza en el contexto del aprendizaje supervisado en inteligencia artificial y machine learning para evaluar el desempeño de un modelo de clasificación. Esta matriz compara las etiquetas reales de los datos de prueba con las etiquetas predichas por el modelo y muestra cuántos datos se clasificaron correctamente y cuántos se clasificaron incorrectamente.
La matriz de confusión generalmente tiene cuatro entradas, que son: verdaderos positivos (TP), falsos positivos (FP), verdaderos negativos (TN) y falsos negativos (FN). Los verdaderos positivos representan los casos en que el modelo predijo correctamente la presencia de una clase específica, los falsos positivos representan los casos en que el modelo predijo incorrectamente la presencia de una clase específica, los verdaderos negativos representan los casos en que el modelo predijo correctamente la ausencia de una clase específica y los falsos negativos representan los casos en que el modelo predijo incorrectamente la ausencia de una clase específica.
La matriz de confusión es una herramienta útil para evaluar el rendimiento de un modelo de clasificación y ajustar sus parámetros para mejorar su precisión. Además, se pueden calcular varias métricas de evaluación, como la precisión, el recall, la F1-score y la tasa de error, a partir de la información proporcionada por la matriz de confusión.
La Automatización Inteligente de Procesos en las empresas ha cambiado en el mundo de forma muy rápida en los últimos años. El COVID-19, las interr [...]
Leer más »Las predicciones de GAMCO apuntan a un aumento de, al menos, un 10% en el porcentaje de la «morosidad en créditos» a particulares durante el próxi [...]
Leer más »La inteligencia artificial es cada vez más utilizada y aplicada en muchos sectores, y como no podía ser menos, ha entrado con fuerza en el sector de [...]
Leer más »El sector financiero no deja de implementar nuevas tecnologías para modernizar y digitalizar sus funciones. Uno de los motivos es el procesamiento de [...]
Leer más »