Una matriz de confusión es una tabla que se utiliza en el contexto del aprendizaje supervisado en inteligencia artificial y machine learning para evaluar el desempeño de un modelo de clasificación. Esta matriz compara las etiquetas reales de los datos de prueba con las etiquetas predichas por el modelo y muestra cuántos datos se clasificaron correctamente y cuántos se clasificaron incorrectamente.
La matriz de confusión generalmente tiene cuatro entradas, que son: verdaderos positivos (TP), falsos positivos (FP), verdaderos negativos (TN) y falsos negativos (FN). Los verdaderos positivos representan los casos en que el modelo predijo correctamente la presencia de una clase específica, los falsos positivos representan los casos en que el modelo predijo incorrectamente la presencia de una clase específica, los verdaderos negativos representan los casos en que el modelo predijo correctamente la ausencia de una clase específica y los falsos negativos representan los casos en que el modelo predijo incorrectamente la ausencia de una clase específica.
La matriz de confusión es una herramienta útil para evaluar el rendimiento de un modelo de clasificación y ajustar sus parámetros para mejorar su precisión. Además, se pueden calcular varias métricas de evaluación, como la precisión, el recall, la F1-score y la tasa de error, a partir de la información proporcionada por la matriz de confusión.
El término Business Intelligence (o BI) define el uso de tecnologías de la información para identificar, descubrir y analizar datos comerciales, co [...]
Leer más »Las soluciones de inteligencia artificial (IA) son valiosas para reducir las devoluciones de productos. A través del análisis de datos y la toma de [...]
Leer más »Los servicios o las soluciones en la nube (cloud computing), ya sea en España o en cualquier parte del mundo, son infraestructuras, plataformas o sis [...]
Leer más »Hace unos días pudimos asistir a un evento pionero en el mundo del Retail, la feria Retail Future 2022. En su quinta edición, y bajo el lema “Reta [...]
Leer más »