Las máquinas de soporte vectorial (SVM, por sus siglas en inglés) son un tipo de algoritmo de aprendizaje supervisado utilizado para la clasificación y regresión en problemas de Machine Learning.
La idea detrás de las SVM es encontrar un hiperplano que separe de manera óptima las diferentes clases de datos. En el caso de la clasificación binaria, el hiperplano divide el espacio en dos regiones, una para cada clase. En el caso de la regresión, se busca un hiperplano que se ajuste lo mejor posible a los datos.
Para encontrar el hiperplano óptimo, las SVM buscan maximizar la distancia entre los puntos más cercanos de cada clase (llamados vectores de soporte), lo que se conoce como máximo margen. En caso de que los datos no sean linealmente separables, se utilizan técnicas de kernel para transformar el espacio de características en uno de mayor dimensionalidad donde sí puedan ser separables.
Las SVM son ampliamente utilizadas en la clasificación de datos en áreas como la biología, finanzas y marketing, así como en la detección de fraudes, reconocimiento de imágenes y procesamiento de lenguaje natural.
El mercado del Big Data está en plena expansión. Aunque la necesidad de transformar datos en información para la toma de decisiones no es nueva, la [...]
Leer más »Todas los negocios tienen planificado, normalmente, un crecimiento anual aunque no todos lo logran. Aumentar las ventas de una empresa en este 2022 es [...]
Leer más »Existe consenso entre los directivos de las principales empresas del mundo acerca del impacto crucial que la Inteligencia Artificial (IA) en el sector [...]
Leer más »La inteligencia artificial (IA), el Aprendizaje Automático (ML) y el análisis de datos están cambiando rápidamente y teniendo un gran impacto en e [...]
Leer más »