K-means es un algoritmo de clustering utilizado en el campo del aprendizaje no supervisado. El objetivo del algoritmo es agrupar un conjunto de datos en K clusters, donde K es un número predefinido de clusters. El algoritmo comienza seleccionando K centroides al azar y asignando cada punto de datos al centroide más cercano. Luego, el algoritmo recalcula los centroides como la media de todos los puntos de datos asignados a cada centroide, y repite el proceso de asignación y recalculo de centroides hasta que la convergencia se alcanza y los centroides ya no cambian de posición significativamente. Como resultado se consigue dividir el espacio de los datos en K celdas de Voronoi (uno por centroide), pudiendo asociar cada observación de entrada al centroide más cercano. El algoritmo K-means es ampliamente utilizado en tareas de segmentación de clientes, clasificación de texto y procesamiento de imágenes, entre otras aplicaciones.
Existe un amplio consenso entre los directivos de las principales empresas del mundo acerca del impacto que va a tener la inteligencia artificial en e [...]
Leer más »Un artículo publicado en abril de 2021 por Óscar Jiménez El Confidencial, se titulaba así “Premio de 34.000 M para los bancos por aplicar bien i [...]
Leer más »El escenario actual que estamos viviendo en España con la crisis sanitaria del COVID-19 ha provocado que muchas empresas hayan tenido que realizar ER [...]
Leer más »La inteligencia artificial (IA) puede cambiar la forma de gestionar los canales de ventas y clientes de las empresas fabricantes y distribuidoras de p [...]
Leer más »