K-means es un algoritmo de clustering utilizado en el campo del aprendizaje no supervisado. El objetivo del algoritmo es agrupar un conjunto de datos en K clusters, donde K es un número predefinido de clusters. El algoritmo comienza seleccionando K centroides al azar y asignando cada punto de datos al centroide más cercano. Luego, el algoritmo recalcula los centroides como la media de todos los puntos de datos asignados a cada centroide, y repite el proceso de asignación y recalculo de centroides hasta que la convergencia se alcanza y los centroides ya no cambian de posición significativamente. Como resultado se consigue dividir el espacio de los datos en K celdas de Voronoi (uno por centroide), pudiendo asociar cada observación de entrada al centroide más cercano. El algoritmo K-means es ampliamente utilizado en tareas de segmentación de clientes, clasificación de texto y procesamiento de imágenes, entre otras aplicaciones.
Seguramente te estés preguntando ¿Qué es un seguro de caución? ¿Y cómo ayuda a tu empresa? Y es que, en el entorno económico actual, [...]
Leer más »Data Mining es un proceso de exploración y análisis de grandes cantidades de datos, con el objetivo de descubrir patrones, relaciones y tendencias q [...]
Leer más »Desde 2008, varios países han promulgado leyes que reconocen la importancia de integrar la inteligencia artificial (IA) en ámbitos clave de la vida [...]
Leer más »Antes de explicaros qué es la inteligencia artificial, nos gustaría empezar con la frase del libro Age of intelligent machines (1992), de Raymond Ku [...]
Leer más »