K-means es un algoritmo de clustering utilizado en el campo del aprendizaje no supervisado. El objetivo del algoritmo es agrupar un conjunto de datos en K clusters, donde K es un número predefinido de clusters. El algoritmo comienza seleccionando K centroides al azar y asignando cada punto de datos al centroide más cercano. Luego, el algoritmo recalcula los centroides como la media de todos los puntos de datos asignados a cada centroide, y repite el proceso de asignación y recalculo de centroides hasta que la convergencia se alcanza y los centroides ya no cambian de posición significativamente. Como resultado se consigue dividir el espacio de los datos en K celdas de Voronoi (uno por centroide), pudiendo asociar cada observación de entrada al centroide más cercano. El algoritmo K-means es ampliamente utilizado en tareas de segmentación de clientes, clasificación de texto y procesamiento de imágenes, entre otras aplicaciones.
Fernando Pavón, CEO de Gamco y experto en Inteligencia Artificial aplicada al negocio nos explica en los ciclo de AceleraPYMES cómo las pequeñas em [...]
Leer más »OpenAI es una empresa tecnológica creada por los principales líderes en inteligencia artificial que, en sus comienzos, se definía como una organiza [...]
Leer más »El mercado del Big Data está en plena expansión. Aunque la necesidad de transformar datos en información para la toma de decisiones no es nueva, la [...]
Leer más »A medida que el comercio electrónico continúa creciendo a un ritmo vertiginoso, los estafadores también están encontrando nuevas y sofisticadas fo [...]
Leer más »