El descenso del gradiente (gradient descent en inglés) es un algoritmo de optimización utilizado en el aprendizaje automático y el aprendizaje profundo para ajustar los parámetros de un modelo con el fin de minimizar la función de coste o pérdida.
El objetivo del descenso del gradiente es encontrar los valores de los parámetros del modelo que minimizan la función de coste, es decir, aquellos que producen las predicciones más precisas. Para ello, el algoritmo utiliza la información proporcionada por el gradiente de la función de coste en cada iteración del proceso de entrenamiento.
En cada iteración, el descenso del gradiente ajusta los valores de los parámetros del modelo en la dirección opuesta al gradiente de la función de coste, con el fin de disminuir el error de predicción. La tasa de aprendizaje es un hiperparámetro del algoritmo que determina el tamaño del paso en cada iteración, y puede ser ajustado para obtener un equilibrio entre la velocidad de convergencia y la precisión del resultado.
El descenso del gradiente se utiliza en diversos algoritmos de aprendizaje automático y aprendizaje profundo, como regresión lineal, regresión logística, redes neuronales, entre otros.
En la era digital en la que vivimos, la inteligencia artificial (IA) ha emergido como una fuerza disruptiva en numerosas industrias, y el sector banca [...]
Leer más »El Churn, o la tasa de pérdida de clientes, representa un desafío constante para las empresas actuales. La capacidad para retener a los clientes exi [...]
Leer más »La inteligencia artificial (IA), el Aprendizaje Automático (ML) y el análisis de datos están cambiando rápidamente y teniendo un gran impacto en e [...]
Leer más »Todas los negocios tienen planificado, normalmente, un crecimiento anual aunque no todos lo logran. Aumentar las ventas de una empresa en este 2022 es [...]
Leer más »