El conjunto de prueba (CP), en el contexto de la inteligencia artificial y el aprendizaje automático, se refiere a un conjunto separado de datos que se utiliza para evaluar la precisión y el rendimiento de un modelo de aprendizaje automático entrenado.
El conjunto de prueba consta de un conjunto de ejemplos etiquetados similares al conjunto de entrenamiento, pero que el modelo no ha visto antes durante su proceso de entrenamiento. El modelo de aprendizaje automático utiliza el conjunto de prueba para evaluar su capacidad para generalizar y predecir con precisión etiquetas de salida para nuevos ejemplos.
La evaluación del modelo en el conjunto de prueba ayuda a determinar si el modelo está sobreajustando o subajustando los datos de entrenamiento. El sobreajuste ocurre cuando el modelo se ajusta demasiado a los datos de entrenamiento y no se generaliza bien a nuevos datos, mientras que el subajuste ocurre cuando el modelo no se ajusta lo suficiente a los datos de entrenamiento y no puede predecir con precisión los datos de prueba.
Es importante tener un conjunto de prueba independiente para evaluar el rendimiento del modelo, ya que utilizar el conjunto de entrenamiento para la evaluación puede llevar a una evaluación optimista de la precisión del modelo.
Hoy en día la transformación digital es clave en cualquier tipo de negocio. El 40% de las empresas españolas no existirá en su forma actual en los [...]
Leer más »La Inteligencia Artificial está transformando la forma en la cual las empresas se relacionan con sus clientes, cómo se gestiona el trabajo, el talen [...]
Leer más »Es conveniente que mediante un breve cuestionario seamos capaces de verificar la viabilidad de una oportunidad de negocio. A continuación, desarrolla [...]
Leer más »El contenido de este artículo sintetiza parte del capítulo “Concepto y breve historia de la Inteligencia Artificial” de la tesis Generación de [...]
Leer más »