En el ámbito de la inteligencia artificial y el machine learning, el clustering o agrupamiento se refiere a una técnica de análisis de datos no supervisada en la que un conjunto de objetos o datos se divide en grupos o clusters según su similitud. El objetivo del clustering es encontrar patrones en los datos y agruparlos de manera que los objetos dentro de un mismo cluster sean similares entre sí y diferentes a los objetos en otros clusters.
Los algoritmos de clustering pueden ser utilizados para diferentes propósitos, como la segmentación de clientes en marketing, la identificación de grupos de pacientes con características similares en la medicina, la clasificación de documentos en el procesamiento de lenguaje natural, entre otros. Los métodos de clustering más comunes son el k-means, el hierarchical clustering y el density-based clustering.
Es importante destacar que el clustering es una técnica exploratoria y no se sabe de antemano el número óptimo de clusters que deben formarse, por lo que se requiere un análisis adicional para evaluar la calidad de los clusters y seleccionar el mejor modelo.
El sector bancario ha experimentado transformaciones considerables durante los últimos 10 años. Especialmente a medida que la banca se ha ido integr [...]
Leer más »La Industria 4.0 es el nombre dado a la cuarta revolución industrial que se caracteriza por la inclusión de tecnologías avanzadas en los procesos d [...]
Leer más »La inteligencia empresarial, también conocida como "business intelligence" o BI, es un conjunto de técnicas, herramientas y metodologías que se uti [...]
Leer más »Las principales aplicaciones de IA como la mayoría de apps están al alcance de muchas empresas y permiten que grandes cantidades de datos sean anali [...]
Leer más »