En el ámbito de la inteligencia artificial y el machine learning, el clustering o agrupamiento se refiere a una técnica de análisis de datos no supervisada en la que un conjunto de objetos o datos se divide en grupos o clusters según su similitud. El objetivo del clustering es encontrar patrones en los datos y agruparlos de manera que los objetos dentro de un mismo cluster sean similares entre sí y diferentes a los objetos en otros clusters.
Los algoritmos de clustering pueden ser utilizados para diferentes propósitos, como la segmentación de clientes en marketing, la identificación de grupos de pacientes con características similares en la medicina, la clasificación de documentos en el procesamiento de lenguaje natural, entre otros. Los métodos de clustering más comunes son el k-means, el hierarchical clustering y el density-based clustering.
Es importante destacar que el clustering es una técnica exploratoria y no se sabe de antemano el número óptimo de clusters que deben formarse, por lo que se requiere un análisis adicional para evaluar la calidad de los clusters y seleccionar el mejor modelo.
El término inteligencia artificial (IA) es pura actualidad, pero fue inventado en 1956 por John McCarthy, Marvin Minsky y Claude Shannon en la famosa [...]
Leer más »El auge de la Inteligencia Artificial (IA) en los negocios está muy de actualidad. Su uso se está extendiendo y está cambiando, incluso, los modelo [...]
Leer más »Un artículo publicado en abril de 2021 por Óscar Jiménez El Confidencial, se titulaba así “Premio de 34.000 M para los bancos por aplicar bien i [...]
Leer más »La Industria 4.0 o Cuarta Revolución Industrial se basa en la integración de tecnologías digitales en la producción y el procesamiento de bienes y [...]
Leer más »