Un autoencoder es un tipo de red neuronal artificial que se utiliza para aprender representaciones eficientes de datos. El objetivo principal de un autoencoder es reducir la dimensionalidad de los datos de entrada, es decir, comprimirlos en un espacio de características más pequeño, y luego reconstruir los datos de salida originales a partir de esta representación comprimida.
Un autoencoder consta de dos partes principales: el codificador y el decodificador. El codificador toma los datos de entrada y los transforma en una representación comprimida en el espacio de características. El decodificador toma esta representación comprimida y la utiliza para reconstruir los datos de salida originales.
La idea detrás de un autoencoder es que, al obligar al modelo a aprender una representación eficiente de los datos, también está obligando al modelo a identificar las características más importantes de los datos de entrada. Por lo tanto, los autoencoders son útiles para la reducción de la dimensionalidad, la eliminación de ruido de los datos y la detección de anomalías.
La Inteligencia Artificial está transformando la forma en la cual las empresas se relacionan con sus clientes, cómo se gestiona el trabajo, el talen [...]
Leer más »A diferencia de un programa informático, en el que se procesan una lista de órdenes a través de un programa de ordenador, la IA va más allá de la [...]
Leer más »El chargeback hace referencia a las devoluciones que ocurren cuando, a petición del titular de una tarjeta, el banco solicita en su nombre un reembol [...]
Leer más »Ya tienes todo lo necesario para ponerte manos a la obra y empezar a trabajar con los datos de la empresa. Tras sortear los primeros obstáculos de ma [...]
Leer más »