Un autoencoder es un tipo de red neuronal artificial que se utiliza para aprender representaciones eficientes de datos. El objetivo principal de un autoencoder es reducir la dimensionalidad de los datos de entrada, es decir, comprimirlos en un espacio de características más pequeño, y luego reconstruir los datos de salida originales a partir de esta representación comprimida.
Un autoencoder consta de dos partes principales: el codificador y el decodificador. El codificador toma los datos de entrada y los transforma en una representación comprimida en el espacio de características. El decodificador toma esta representación comprimida y la utiliza para reconstruir los datos de salida originales.
La idea detrás de un autoencoder es que, al obligar al modelo a aprender una representación eficiente de los datos, también está obligando al modelo a identificar las características más importantes de los datos de entrada. Por lo tanto, los autoencoders son útiles para la reducción de la dimensionalidad, la eliminación de ruido de los datos y la detección de anomalías.
El contenido de este artículo sintetiza parte del capítulo “Concepto y breve historia de la Inteligencia Artificial” de la tesis Generación de [...]
Leer más »La Industria 4.0 es el nombre dado a la cuarta revolución industrial que se caracteriza por la inclusión de tecnologías avanzadas en los procesos d [...]
Leer más »La moda que viene de USA y obligará a incorporar la IA en el proceso Seguramente hace poco tiempo que hemos empezado a escuchar un nuevo concepto en [...]
Leer más »Se pueden destacar 5 desafíos del Big Data que se definen como V (volumen, velocidad, veracidad, variedad y valor). R. Narasimhan debatió sobre 3V c [...]
Leer más »