Un autoencoder es un tipo de red neuronal artificial que se utiliza para aprender representaciones eficientes de datos. El objetivo principal de un autoencoder es reducir la dimensionalidad de los datos de entrada, es decir, comprimirlos en un espacio de características más pequeño, y luego reconstruir los datos de salida originales a partir de esta representación comprimida.
Un autoencoder consta de dos partes principales: el codificador y el decodificador. El codificador toma los datos de entrada y los transforma en una representación comprimida en el espacio de características. El decodificador toma esta representación comprimida y la utiliza para reconstruir los datos de salida originales.
La idea detrás de un autoencoder es que, al obligar al modelo a aprender una representación eficiente de los datos, también está obligando al modelo a identificar las características más importantes de los datos de entrada. Por lo tanto, los autoencoders son útiles para la reducción de la dimensionalidad, la eliminación de ruido de los datos y la detección de anomalías.
GAMCO es una empresa pionera en la creación de soluciones de software de Inteligencia Artificial y Aprendizaje Automático. Las soluciones de GAMCO p [...]
Leer más »Como consecuencia de esta situación de pandemia y económica en la que nos encontramos desde hace dos años, con la intención de proteger mejor los [...]
Leer más »El sector bancario ha experimentado transformaciones considerables durante los últimos 10 años. Especialmente a medida que la banca se ha ido integr [...]
Leer más »Antes de hablar de la inteligencia artificial en el mercado Fintech nos gustaría mencionar que el término Fintech se aplica hoy en día para las tec [...]
Leer más »