Un autoencoder es un tipo de red neuronal artificial que se utiliza para aprender representaciones eficientes de datos. El objetivo principal de un autoencoder es reducir la dimensionalidad de los datos de entrada, es decir, comprimirlos en un espacio de características más pequeño, y luego reconstruir los datos de salida originales a partir de esta representación comprimida.
Un autoencoder consta de dos partes principales: el codificador y el decodificador. El codificador toma los datos de entrada y los transforma en una representación comprimida en el espacio de características. El decodificador toma esta representación comprimida y la utiliza para reconstruir los datos de salida originales.
La idea detrás de un autoencoder es que, al obligar al modelo a aprender una representación eficiente de los datos, también está obligando al modelo a identificar las características más importantes de los datos de entrada. Por lo tanto, los autoencoders son útiles para la reducción de la dimensionalidad, la eliminación de ruido de los datos y la detección de anomalías.
La web semántica o “internet del conocimiento” es una prolongación de la actual web. A diferencia de esta, la web semántica se basa en proporci [...]
Leer más »Hoy vamos a explicar las diferencias que existen entre un CRM (Customer Relationship Management) tradicional y un CRM inteligente aplicando tecnologí [...]
Leer más »OpenAI es una empresa tecnológica creada por los principales líderes en inteligencia artificial que, en sus comienzos, se definía como una organiza [...]
Leer más »GAMCO es una empresa pionera en la creación de soluciones de software de Inteligencia Artificial y Aprendizaje Automático. Las soluciones de GAMCO p [...]
Leer más »