El auto-ajuste de modelos predictivos (en inglés, automatic model tuning) es una técnica utilizada en el aprendizaje automático y la inteligencia artificial para optimizar automáticamente los hiperparámetros de un modelo predictivo. Los hiperparámetros son parámetros que no se aprenden durante el entrenamiento del modelo, sino que se establecen antes del entrenamiento y afectan directamente el rendimiento del modelo.
El auto-ajuste de modelos predictivos implica la selección automática de los mejores valores de los hiperparámetros mediante la exploración sistemática de las diferentes combinaciones posibles y la evaluación de su rendimiento en un conjunto de validación. Esta técnica puede utilizarse en una amplia variedad de modelos de aprendizaje automático, como árboles de decisión, redes neuronales y máquinas de vectores de soporte.
El auto-ajuste de modelos predictivos puede mejorar significativamente el rendimiento y la precisión de un modelo predictivo, especialmente en conjuntos de datos grandes y complejos. Al optimizar automáticamente los hiperparámetros, se puede reducir la necesidad de ajuste manual y la intervención humana, lo que puede ahorrar tiempo y recursos y mejorar la escalabilidad y la eficiencia del proceso de modelado.
La Industria 4.0 es el nombre dado a la cuarta revolución industrial que se caracteriza por la inclusión de tecnologías avanzadas en los procesos d [...]
Leer más »El contenido de este artículo sintetiza parte del capítulo “Concepto y breve historia de la Inteligencia Artificial” de la tesis Generación de [...]
Leer más »Las tecnologías de IA se usan actualmente en las empresas para la transformación de los procesos de negocio, impulsar la interacción con los client [...]
Leer más »La integración de herramientas para análisis predictivo es ya habitual en las grandes empresas, pero gracias a la evolución y, sobre todo, a la dem [...]
Leer más »