El auto-ajuste de modelos predictivos (en inglés, automatic model tuning) es una técnica utilizada en el aprendizaje automático y la inteligencia artificial para optimizar automáticamente los hiperparámetros de un modelo predictivo. Los hiperparámetros son parámetros que no se aprenden durante el entrenamiento del modelo, sino que se establecen antes del entrenamiento y afectan directamente el rendimiento del modelo.
El auto-ajuste de modelos predictivos implica la selección automática de los mejores valores de los hiperparámetros mediante la exploración sistemática de las diferentes combinaciones posibles y la evaluación de su rendimiento en un conjunto de validación. Esta técnica puede utilizarse en una amplia variedad de modelos de aprendizaje automático, como árboles de decisión, redes neuronales y máquinas de vectores de soporte.
El auto-ajuste de modelos predictivos puede mejorar significativamente el rendimiento y la precisión de un modelo predictivo, especialmente en conjuntos de datos grandes y complejos. Al optimizar automáticamente los hiperparámetros, se puede reducir la necesidad de ajuste manual y la intervención humana, lo que puede ahorrar tiempo y recursos y mejorar la escalabilidad y la eficiencia del proceso de modelado.
Hoy en día la transformación digital es clave en cualquier tipo de negocio. El 40% de las empresas españolas no existirá en su forma actual en los [...]
Leer más »Los métodos de clustering, o agrupamiento, son una pieza fundamental en el proceso de análisis de los datos, pues permiten una segmentación automá [...]
Leer más »El software de detección de fraude es una herramienta importante para proteger las empresas y los individuos de la actividad fraudulenta y minimizar [...]
Leer más »El deep learning se traduce como aprendizaje profundo y es un tipo de inteligencia artificial (IA) que se encuentra englobado dentro del machine learn [...]
Leer más »